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ABSTRACT 

This study presents the results of investigations and analyses for two failed slopes and 

one proposed embankment slope involving clay shales in Iowa. The in-situ Borehole Shear 

Test (BST) was the primary test method for obtaining the soil shear strength parameter 

values in the investigations, which were supplemented with laboratory ring shear tests for the 

three slopes and other laboratory tests including direct shear tests for the embankment slope. 

The limit equilibrium method was used for the slope stability analyses. The major findings in 

the study include (1) the estimate of the mobilized shear strength parameter values for the 

slope failures could be improved by considering the BST measurements compared with 

empirical method of using "good engineering judgment or experience"; (2) geotechnical 

information including in-situ BST measurements was effective in the characterization of the 

weathered shales with emphasis on the different weathering grades for slope stability 

analyses; (3) the relatively large amount of in-situ shear strength parameter values was 

particularly useful for probabilistic slope stability analysis, which provided a check and 

comparison to the probabilistic analyses using conventional shear strength parameter values 

of indirect field measurements or laboratory measurements. 
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CHAPTER 1. INTRODUCTION 

OVERVIEW 

Soil slope instability continues to be a problem in Iowa. Failures occur in both cut 

slopes and earth embankment slopes. Lohnes and Kjartanson (2002) reported that at least 48 

of the 99 counties in Iowa have experienced slope stability problems since 1993. A particular 

case was the Highway 330 slope failure in Jasper County, Iowa, which developed an 

approximate 35 m long head scarp (Fig. 1.1). Field borings conducted after the tension cracks 

showed that the fill soils were 8 to 10% above optimum moisture content, which indicated 

that the soil was nearly saturated and had developed low shear strength. Slope failures have 

posed concerns to the public safety, caused construction delays and resulted in costly repair 

work. 

Slope failures are complex events and the factors that affect slope stability are 

difficult to measure, particularly shear strength parameter values of the soil and ground water 

conditions. Ideally, the stability problems can be discovered and addressed before a slope 

failure occurs. However, once a failure occurs or a potential failure is identified, information 

and knowledge of the major factors resulting in the failure are required to develop an 

effective remediation plan. 

It is necessary to evaluate the stability of the concerned slopes, or to investigate the 

causes of the slope failures, in a rapid and effective way. Although various test methods are 

available for field investigation, this study focused on the use of the Borehole Shear Test 

(BST), which has been considered as a simple and quick in-situ testing technique (Handy 

1986). The investigations were supplemented by other laboratory tests. Particular emphasis 

was given to the characterization of the clay shales which have been associated with many 

slope failures in Iowa. 

OBJECTIVES AND SCOPE 

The objectives and scope of the study are as follows: 
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(1) Develop and validate appropriate test procedures for quickly determining in-situ 

shear strength parameter values using the BST technique through the investigations of two 

slope failures in clay shales, and show the significance of the application of the BST in 

understanding the failure mechanisms; 

(2) Classify and characterize the weathered shales associated with potential slope 

instability for a major embankment slope project using the BST, and demonstrate the 

usefulness of the BST in shale characterization with respect to different weathering grades; 

(3) Illustrate the importance and effectiveness of using the relatively large amount of 

the in-situ shear strength parameter values for slope stability analysis through the 

probabilistic approach. 

DISSERTATION ORGANIZATION 

In this dissertation, Chapter 2 provides literature review relevant to the study, which 

includes (1) Borehole Shear Test; (2) Residual strength and ring shear test; (3) Limit 

equilibrium slope analysis; and (4) Probabilistic slope stability analysis. 

Chapters 3, 4 and 5 comprise three independent, full papers submitted to major 

technical journals. Each paper appears as a dissertation chapter which includes introduction, 

references to literature reviewed, results, discussion, conclusions, acknowledgements and a 

list of references. The first paper presents the results of post-failure investigations of two clay 

shale slopes using Borehole Shear Tests and ring shear tests, and shows the significance of 

the application of the BST in understanding the failure mechanisms of slopes. The second 

paper describes the results of characterization and engineering properties of clay shales for an 

embankment slope, and demonstrates the usefulness of the BST in shale characterization 

with emphasis on different weathering grades. The third paper illustrates the importance of 

probabilistic analysis of embankment slope using the in-situ shear strength parameter values 

measured by the BST and the comparison with the use of the laboratory shear strength 

parameter values. 

Chapter 6 provides general conclusions that summarize the significant research 

findings from each of the three papers. 
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The Appendix presents the test data or details that are not included in the dissertation 

chapters. Finally, the Vita provides a brief sketch about the author of the dissertation. 
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Proposal submitted to Iowa Department of Transportation. Iowa State University. 

Figure 1.1 Existing slope failure at Highway 330 in Jasper County, Iowa 

(after White 2003) 
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CHAPTER 2. LITERATURE REVIEW 

BOREHOLE SHEAR TEST 

Shear strength of soil is perhaps the most critical factor in slope stability analysis. 

Many apparatus and methods have been used to obtain the shear strength parameters through 

both field measurements (e.g., standard penetration test and cone penetration test, etc.) and 

laboratory measurements (e.g., direct shear test and triaxial test, etc.). Among the various test 

equipment and apparatus, the Borehole Shear Test (BST) is unique in that it gives a rapid, 

direct and accurate in-situ measurement of both effective cohesion and effective friction 

angle (Handy 1986). 

The fundamental consideration involved in the BST is to perform a series of direct 

shear tests on the inside of a borehole (Handy and Fox 1967; Wineland 1975). A BST 

apparatus is shown in Figures 2.1 and 2.2. Tests are conducted by expanding diametrically 

opposed contact shear plates into a borehole under a constant known normal stress, then 

allowing the soil to consolidate, and finally by pulling vertically and measuring the shear 

stress. Data points of BST are plotted on a Mohr-Coulomb shear envelope (Figure 2.3) by 

measuring the maximum shear resistance at successively higher increments of applied 

normal stresses. Depending on soil type, the total testing time for a typical test with 4 to 5 

data points is approximately 30 to 60 minutes (Lutenegger and Hallberg 1981). Because 

drainage times are cumulative, the BST is normally a consolidated-drained test, which is 

demonstrated by pore pressure measurements during test (Lutenegger and Tierney 1986). 

Complete descriptions of the test procedures for BST can be found in the literature (e.g. 

Lutenegger 1987). 

Currently, two types of shear plates for the BST device are available (Figure 2.2), an 

ordinary pressure shear plate, used for testing soils with relatively low shear strengths 

(maximum normal stress of 440 kPa and shear stress of 350 kPa); and a high pressure shear 

plate, used for testing soils with relatively high shear strengths (maximum normal stress of 

2.8 MPa and shear stress of 2.2 MPa) (Handy et al. 1976). The quality of the test may be 

directly verified by examining the shear plates at the end of the test. A well performed test is 
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supported by full attachment of soil to the shear plates (Figures 2.2(b) and 2.2(c)) unless the 

soil is washed away by water in the borehole. Results from the BST are found to be in 

reasonable agreement with those from laboratory tests such as triaxial test (e.g. Lambrechts 

and Rixer 1981). 

The BST has been successfully used by a number of researchers in different soil 

conditions, including sandy, silty and clayey soils and shales (e.g., Demartincourt and Bauer 

1983; Handy 1986; Lutenegger and Tiemey 1986; Millian and Escobar 1987); soft marine 

clays (Lutenegger and Timian 1987; Demartinecourt and Bauer 1983); hard clays (Handy et 

al. 1985) and stiff soil (Lutenegger et al. 1978); and unsaturated soils (Miller et al. 1998). 

Recently, White and Handy (2001) also used the BST to study preconsolidation pressures 

and soil modulii. In addition, the BST has also been used to study a few landslide case 

histories (e.g., Tice and Sams 1974; Handy 1986). The studies show that the BST is 

particularly useful for quickly and accurately acquiring the in-situ shear strength parameters 

of the soil within the slip zone of an active landslide. After the slide activates, soil cohesion 

appears to become essentially zero (Handy 1986). 

The Rock Borehole Shear Test (Rock BST) is also a portable direct shear device used 

to evaluate rock shear strength in-situ. The device was developed by Dr. Handy and his 

associates at the Iowa State University (Handy et al. 1976). The operation mechanism of the 

Rock BST is similar to that of the BST, except that the Rock BST is designed to cater for a 

much higher normal and shear stress. The maximum rock shear strength that may be 

measured is 45 MPa, and the range of applied normal stress is 0 to 86 MPa (Handy et al. 

1976). The Rock BST device consists of three basic parts, i.e. the shear head assembly, the 

pulling jack, and the console (Figure 2.4). A number of authors have reported the successful 

uses of Rock BST in measuring the shear strength of rock (e.g. Higgins and Rockaway 1979, 

1980; Pitt and Rohde 1984). 

RESIDUAL STRENGTH AND RING SHEAR TEST 

Skempton (1964, 1985) described the residual strength as the minimum strength of 

soil after large displacement. Lambe and Whitman (1979) expressed the residual strength as 
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the ultimate strength of soil in the ultimate conditions during shearing. The shear strength of 

the soil can drop from peak value to the residual value after large displacement, and the drop 

can be significant for materials with large amounts of clay minerals, particularly platy 

minerals. The formation of the shear surface and achieving the residual strength results in the 

formation of a new fabric, particularly in material with high clay content. The drop in 

strength is attributed to clay particle reorientation parallel to the direction of shearing (Lambe 

and Whitman 1979; Bromhead 1979). While the cohesion provides much of the peak strength, 

the material has little cohesion once a shear surface is formed (Skempton 1964). Residual 

strength has been correlated with soil index properties such clay content and Atterberg limit 

by many researchers (e.g., Voight 1973; Kanji 1974; Lupini et al. 1981; Mesri and Cepeda-

Diaz 1986; Collotta et al. 1989; Stark and Bid 1994). Attempts to correlate <|>r with soil 

mineralogical composition were also made by Tiwari and Marui (2005). Residual strength is 

often related to long-term stability problem and for areas with landslide history, bedding 

planes or folded strata (Skempton 1985). The drop into residual strength from peak strength 

may cause reactivation of old landslides. 

Residual strength parameters are usually determined using a rotational ring shear test 

device. Various types of ring shear apparatus have been reported by Hvorslev (1939), La 

Gatta (1970), Bishop et al. (1971) and Bromhead (1979). The Bromhead ring shear 

apparatus (Figures 2.5 and 2.6) has become widely used due to its simplicity in operation 

compared to other various models. In the apparatus, the ring shaped specimen has an internal 

diameter of 7 cm and an external diameter of 10 cm. Drainage is provided by two porous 

bronze stones fixed to the upper platen and to the bottom of the container. 

Currently, a few testing procedures have been proposed for the use of the Bromhead 

ring shear apparatus. Stark and Vetell (1992) have shown that the single stage test procedure 

provides a good estimation of the residual strength at effective normal stress less than 200 

kPa. When the effective normal stress is greater than 200 kPa, consolidation of the specimen 

during the test causes settlement of the upper platen into the lower platen giving higher 

residual strength values. Stark and Vetell (1992) also concluded that in the multistage test 

procedure an additional strength, probably due to wall friction as the top platen settles into 

the specimen container, develops during consolidation and shear process; hence they 
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proposed the flush test procedure in which, increasing the thickness of the specimen prior to 

shear reduces the wall friction and gives more trustworthy measured values. This procedure 

takes substantial time to reach the residual condition when it is conducted at low rate of 

displacement. In this study, the test procedures (multistage test procedures) described in 

ASTM D6467-99 (ASTM 2002) were adopted to determine the residual strength of soils. The 

soil specimen is pre-sheared at a relatively large displacement rate and followed by 

subsequent shearing under small displacement rate under a few different normal stresses. The 

plot of shear stress versus normal stress gives the Mohr-Coulomb failure envelope and the 

residual shear strength parameter values. 

LIMIT EQUILIBRIUM SLOPE ANALYSIS 

Factor of Safety 

Once the slope geometry and subsoil conditions of a slope have been determined, 

stability of a slope can be evaluated using either published chart solutions or a computer 

analysis. The primary objectives of a slope stability analysis normally include: (1) to evaluate 

how safe a slope is, or to calculate the factor of safety for a slope before its failure; and (2) to 

find out the failure mechanism if a slope has failed in order to provide necessary information 

for the remedial design. 

Stability of a slope is usually analyzed by methods of limit equilibrium, and the factor 

of safety of the so-called critical slip surface is computed. The factor of safety is defined as 

the ratio between the shear strength and the shear stress required for the equilibrium of the 

slope: 

Factor of Safety = — —Shear strength— (l) 
Shear stress required for equilibrium 

which can be expressed as 

F= C + otan<* (2) 
S 

where F = factor of safety, c = soil cohesion, <j) = soil friction angle, CT = normal stress on the 

slip surface, and xer = shear stress required for equilibrium. 
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Deterministic slope stability analysis as obtained through equilibrium analysis 

computes the factor of safety based on a fixed set of conditions and material parameters. In 

practice, however, there are many sources of uncertainty in slope stability analysis, e.g., 

spatial uncertainties (site topography and stratigraphy, etc) and data input uncertainties (in-

situ soil characteristics, soil properties, etc.). Probabilistic slope stability analysis allows for 

the consideration of such uncertainty and variability of the input parameters. Since the 

Borehole Shear Test, which can produce a large amount of soil shear strength data in a short 

time, will be the primary in-situ investigation method in the study, it will be an advantage to 

perform probabilistic analysis to account for the shear strength variability. 

Limit Equilibrium Slope Analysis 

In equilibrium analysis, the potential sliding mass is subdivided into a series of slices, 

and a general limit equilibrium formulation (Fredlund et al. 1981; Chugh 1986) can be used 

in the factor of safety computation. The equations of statics that can be generated include: 

(1) Summation of forces in a vertical direction for each slice, where the resulting 

equations are solved for the normal forces at the bases of the slices; 

(2) Summation of forces in a horizontal direction for each slice is used to compute the 

interslice normal forces, where the resulting equations are applied in an integration manner 

across the sliding mass; 

(3) Summation of moments about a common point for all slices, where the resulted 

equations can be rearranged and solved for the moment equilibrium factor of safety, Fm; 

(4) Summation of forces in a horizontal direction for all slices, giving rise to a force 

equilibrium factor of safety, Ff. 

Even with the above static equations, the analysis is still indeterminate, and a further 

assumption is made regarding the direction of the resultant interslice forces. The direction is 

assumed to be described by an interslice force function. The factors of safety can then be 

computed based on moment equilibrium (Fm) and force equilibrium (Ff). These factors of 

safety may vary depending on the percentage of the interslice force function used in the 

computation. 
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Using the same general limit equilibrium formulation, it is also possible to specify a 

variety of interslice force conditions and satisfy only the moment or force equilibrium 

conditions. The assumptions made to the interslice forces and the selection of overall force 

(Ff) or moment (Fm) equilibrium in the factor of safety equation, give rise to the various 

methods of analysis. A rigorous method satisfies both moment and force equilibrium (Ff = 

Fm). 

The available computational methods for slope stability include: (1) Fellennius (1936) 

ordinary method of slices; (2) Bishop (1955) simplified method; (3) Janbu (1968) simplified 

method; (4) Lowe and Karafiath (1960) method; (5) Modified Swedish method (US Army 

Corps of Engineers 1970); (6) Spencer (1967) method; (7) Bishop (1955) complete method; 

(8) Janbu (1968) generalized method; (9) S arma (1973) method; and (10) Morgenstern-Price 

method (Morgenstern and Price 1965). These available methods are categorized by the 

assumptions made for solving the equations generated in the methods of slices. Fredlund and 

Krahn (1977), Duncan (1996) and Abramson et al. (2002) provide comprehensive review and 

summary on these computational methods. 

Among the ten methods that can be used to determine the factor of safety, the Bishop 

(1955) simplified method, the Janbu (1968) method and the Morgenstern-Price (1965) 

method are popular because factor of safety value can be quickly calculated for most slip 

surfaces (Abramson et al. 2002). However, factor of safety generally varies depending on the 

selected slip surface. Therefore it is essential to perform a complete, iterative search for the 

critical slip surface to ensure obtaining the minimum factor of safety, regardless of the 

computation method of analysis (Duncan 1996). 

PROBABILISTIC SLOPE STABILITY ANALYSIS 

Probabilistic slope stability analysis quantifies the probability of failure of a slope. In 

general, the input parameters in a probabilistic analysis are considered as the mean values of 

the parameters, and the variability of the parameters can be specified by entering the standard 

derivations of the parameters. 
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Normal Distribution Function 

Since soils are naturally formed materials, and their physical properties vary from 

point to point. The variability of soil properties is a major contributor to the uncertainty in the 

stability of a slope. Laboratory results on natural soils indicate that most soil properties can 

be considered as random variables conforming to the normal distribution function (Lumb 

1966; Tan et al. 1993), which is often referred to as the Gaussian distribution function that is 

written as: 

f(x) = -
rV2> 

exp (3) 

where f(x) = relative frequency; a = standard deviation; and [i - mean value. 

A normal curve is bell shaped, symmetric and with the mean value exactly at middle 

of the curve. A normal curve is fully defined when the mean value, jo, and the standard 

deviation, a are known. Theoretically, the normal curve will never touch the x axis, since the 

relative frequency, f(x), will be nonzero over the entire range. However, for practical 

purposes, the relative frequency can be neglected after ±5 times standard deviation, a, away 

from the mean value. 

Statistical Analysis of Factors of Safety 

In slope stability analysis, trial factors of safety are assumed to be normally 

distributed. As a result, statistical analysis can be conducted to determine the mean, standard 

deviation, the probability density function and the probability distribution function of the 

slope stability problem. 

Probability of Failure and Reliability Index 

A factor of safety is really an index indicating the relative stability of a slope. It does 

not represent the actual risk level of the slope due to the variability of input parameters. With 

probabilistic analysis, two indices, which are known as probability of failure and reliability 

index, are available to quantify the stability or the risk level of a slope. 
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The probability of failure is the probability of obtaining a factor of safety less than 1.0. 

It is computed by integrating the area under the probability density function for factors of 

safety less than 1.0. The probability of failure is a good index showing the actual level of 

stability of a slope. In addition, there is also no direct relationship between factor of safety 

and probability of failure. In other words, a slope with a higher factor of safety may not be 

more stable than a slope with a lower factor of safety (Harr 1987). For example, a slope with 

factor of safety of 1.5 and a standard deviation of 0.5 will have a much higher probability of 

failure than a slope with factor of safety of 1.2 and a standard deviation of 0.1. 

The reliability index provides a more meaningful measure of stability than the factor 

of safety. It provides a measure of how much confidence one can have in the computed value 

of FS and leads to an estimate of the probability of failure. The reliability index ((3) is defined 

in terms of the mean (p.) and the standard deviation (o) of the trial factors of safety as 

(Christian et al. 1994): 

a 

The reliability index describes the stability of a slope by the number of standard 

deviations separating the mean factor of safety from its defined failure value of 1.0. It can 

also be considered as a way of normalizing the factor of safety with respect to its uncertainty. 

When the shape of the probability distribution is known, the reliability index can be related 

directly to the probability of failure. 

Monte Carlo Method 

Probabilistic slope stability analyses can be performed using a few methods. One 

simple but versatile computational procedure is the Monte Carlo simulation (e.g., Tobutt, 

1982; Hammond et al. 1992; Chandler 1996) which involves (1) the selection of a 

deterministic solution procedure; (2) decisions regarding which input parameters are to be 

modeled probabilistically and the representation of their variability in terms of a normal 

distribution model using the mean value and standard deviation; (3) the estimation of new 

input parameters and the determination of new factors of safety many times; (4) the 
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determination of some statistics of the computed factor of safety, the probability density and 

the probability distribution of the problem. 

The critical slip surface is first determined based on the mean value of the input 

parameters using any of the limit equilibrium methods. Probabilistic analysis is then 

performed on the critical slip surface, taking into consideration the variability of the input 

parameters. The variability of the input parameters is assumed to be normally distributed 

with specified mean values and standard deviations. 

During each Monte Carlo trial, the input parameters are updated based on a 

normalized random number. The factors of safety are then computed based on these updated 

input parameters. By assuming that the factors of safety are also normally distributed, the 

mean and the standard deviations of the factors of safety are determined. The probability 

distribution function is then obtained from the normal curve. The number of Monte Carlo 

trials in an analysis is dependent on the number of variable input parameters and the expected 

probability of failure. In general, the number of required trials increases as the number of 

variable input increases or the expected probability of failure becomes smaller. It is not 

unusual to do thousands of trials in order to achieve an acceptable level of confidence in a 

Monte Carlo probabilistic slope stability analysis (Mostyn and Li 1993). 
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Figure 2. 1 Borehole Shear Test (BST) apparatus 

(a) Pressure console and gauges; (b) Shear plates in the cross-section of a borehole; (c) 

Schematic diagram (Handy 2001) 
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Figure 2. 2 Pictures of BST device 

(a) Base plates and pressure console; (b) Ordinary pressure shear plates after shearing; (c) 

High pressure shear plates after shearing. 
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Figure 2. 3 Example of in-situ BST results (Handy 2001) 
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Figure 2. 4 Rock Borehole Shear Test device 

(a) Pressure console; (b) Shear plate before shearing; (c) Shear plate after shearing. 
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Figure 2. 5 Schematic diagram for the Bromhead (1979) ring shear apparatus 
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Figure 2. 6 Photograph for the Bromhead (1979) ring shear apparatus 
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CHAPTER 3. POST-FAILURE INVESTIGATIONS OF TWO CLAY SHALE 
SLOPES USING BOREHOLE SHEAR TESTS AND RING SHEAR 
TESTS 

A paper submitted to Canadian Geotechnical Journal 

David J. White1, Hong Yang2, and Vernon R. Schaefer3 

ABSTRACT 

Investigations were conducted on two first-time slope failures in stiff clay shale with 

large movement using the in-situ Borehole Shear Test (BST) and a laboratory ring shear test. 

Limit equilibrium slope stability analyses and back calculations were performed on the 

observed slip surface for each slope. The BST measured the peak shear strength and partially 

softened shear strength, while the ring shear test measured the residual shear strength of the 

soils. A range of mobilized shear strengths at failure was obtained from back calculations due 

to the unknown ground water conditions at failure. The most probable mobilized shear 

strength at failure was estimated by considering the partially softened and residual shear 

strengths in the failure zone. The strength changes, or the "strength path", due to the slope 

movement, can thus be fully established and used to examine the failure mechanisms of the 

slopes. The evaluated slope failures are attributed to progressive failures, and were likely 

triggered by high ground water tables. This paper represents an improvement compared to 

the empirical method of using "good engineering judgment or experience" to estimate the 

mobilized shear strength parameter values for slope failures. 

Keywords: Borehole Shear Test; Ring shear test; In-situ test; Residual strength; Clay shale 

slope; slope stability. 
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INTRODUCTION 

Soil slope instability continues to be a problem in engineering practice. Many slope 

failures are attributed to difficulties in measuring or discovering the major factors that affect 

slope stability, especially the variations in shear strength parameter values of the soil. An 

effective means to acquire this information is through a combination of direct measurements 

using in-situ tests and laboratory tests. This paper describes such an approach for two case 

studies using the in-situ Borehole Shear Test (BST) and laboratory ring shear test. 

It has been recognized that the shear strength of stiff clay in a slope can decrease from 

the peak value (prior to the slope movement) to the fully softened value (normally before or 

during the slope failure), and finally to the residual value (after a relatively large slope 

movement) (e.g., Skempton 1964; Bishop 1967). The peak strength and softened strength are 

determined by field tests either directly (e.g., field direct shear box test) or indirectly (e.g., 

pressuremeter tests or penetration tests); or by laboratory tests directly (such as direct shear 

test and triaxial compression test). Other methods for direct measurement of shear strength in 

slope include the in-situ Borehole Shear Test (BST) (Handy 1986), though its applications 

are not widely documented. The residual strength of the soil is usually determined by a 

laboratory ring shear test (e.g., Bromhead 1979). 

The mobilized shear strength at the time of slope failure is normally estimated by 

back calculations. As unique values of the shear strength parameters, i.e. soil cohesion (c') 

and friction angle (<(>'), cannot be determined by back calculation due to the single piece of 

information provided by the slope failure (i.e., factor of safety equals to unity), Duncan and 

Stark (1992) suggested that the best procedure is to assume the value of using "good 

engineering judgment and experience", then calculate the value of c at slope failure. 

Skempton (1964 and 1985) recommended that fully softened shear strength is appropriate for 

first-time sliding; while Mesri and Shahien (2003) concluded that the lower bound for 

mobilized shear strength is the fully softened shear strength in first-time slope failures in 

homogeneous soft to stiff clays. The estimations of the mobilized shear strength parameter 

values can be difficult as the ground water conditions at failure are usually unknown. 

In view of the difficulties and complications in obtaining the shear strengths, this 

study attempts to adopt an alternative approach for the complete evaluation of the shear 
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strength changes, with emphasis on the estimation of the mobilized shear strength at failure. 

The approach involves the use of the in-situ BST and the laboratory ring shear test, and is 

demonstrated by investigation of two first-time slope failures in stiff clay shale of large 

movement. The procedures involved in the study can be briefly illustrated in Figure 3.1. 

Basically, a preliminary field investigation (slope geometry, failure features, etc.) is 

conducted, followed by the in-situ BST. Based on the obtained information, the failure mode 

and slip surface of the slope can be identified. Peak strength and partially softened strength 

are measured from BST; and residual strength is determined from a ring shear test as 

conventionally. However, back-calculated, mobilized shear strength parameter values can be 

best estimated with the knowledge of the partially softened shear strength and residual shear 

strength. Through the proposed approach and procedures, the entire developments of the soil 

strengths, or the "strength path" as proposed in this study, can be fully established; and the 

failure mechanism of the slopes, which have been attributed to progressive failure for the two 

slopes, is also examined. 

BACKGROUND INFORMATION 

Borehole Shear Test 

Among the various test equipment and apparatus to obtain the shear strength 

parameter values, the Borehole Shear Test (BST) is unique in that it gives a rapid, direct and 

accurate in-situ measurement of the shear strength parameters. The fundamental concept of 

the BST involves performing a series of direct shear tests on the inside of a borehole (Handy 

and Fox 1967; Wineland 1975) as shown in Figure 3.2. Tests are conducted by expanding 

diametrically opposed contact shear plates into a borehole under a constant known normal 

stress, then allowing the soil to consolidate, and finally by pulling vertically and measuring 

the shear stress. Points are plotted on a Mohr-Coulomb shear envelope by measuring the 

maximum shear resistance at successively higher increments of applied normal stresses. 

Depending on soil type, total testing time for a typical test with four to five data points is 

approximately 30 to 60 minutes (Lutenegger and Hallberg 1981). The BST is normally a 



www.manaraa.com

24 

consolidated-drained test, which is demonstrated by pore pressure measurements during test 

(Lutenegger and Tierney 1986). 

The BST has been successfully used by a number of researchers in different soil 

conditions, including sandy, silty and clayey soils and shales (e.g., Demartincourt and Bauer 

1983; Handy 1986; Lutenegger and Tierney 1986; Million and Escobar 1987); soft marine 

clays (Lutenegger and Timian 1987; Demartinecourt and Bauer 1983); hard clays (Handy et 

al. 1985) and stiff soil (Lutenegger et al. 1978); and unsaturated soils (Miller et al. 1998). It 

was also used to study the preconsolidation pressures and soil modulii (White and Handy 

2001). In addition, the BST has also been used to study a few landslide case histories (e.g., 

Tice and Sams 1974; Handy 1986). These studies show that the BST is particularly useful for 

quickly and accurately acquiring the in-situ shear strength parameters of the soil within the 

slip zone of an active landslide. After the slide activates, soil cohesion appears to become 

essentially zero (Handy 1986) indicative of a partially softened to residual shear strength. 

Residual Strength and Ring Shear Test 

Skempton (1964, 1985) described residual strength as the minimum strength of the 

soil after large displacement. Lambe and Whitman (1979) expressed the residual strength as 

the ultimate strength of soil in the ultimate condition during shearing. The shear strength of 

the soil can drop from the peak value to the residual value after large displacement, and the 

drop can be significant for materials with large amounts of clay minerals, particularly platy 

minerals. The formation of the shear surface and achievement of the residual strength results 

in the formation of a new fabric. The drop in strength is attributed to clay particle 

reorientation parallel to the direction of shearing (Lambe and Whitman 1979). While the 

cohesion provides much of the peak shear strength, the soil often has little cohesion once a 

shear surface is formed (Skempton 1964). Residual strength is frequently related to long-term 

stability problem and areas with landslide history, bedding planes or folded strata (Skempton 

1985). The drop into residual strength from peak strength may also cause reactivation of 

relict landslides. 

Residual strength parameters are often determined using a rotational ring shear test 

device. Different types of ring shear apparatus have been reported by Hvorslev (1939), La 
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Gatta (1970), Bishop et al. (1971) and Bromhead (1979). The Bromhead ring shear 

apparatus has become widely used due to its simplicity in operation compared to the other 

models. In the apparatus, the ring shaped specimen has an internal diameter of 7 cm and an 

external diameter of 10 cm. Drainage is provided by two porous bronze stones fixed to the 

upper platen and to the bottom of the container. In this study, the test procedures (multistage 

test procedures) described in ASTM D6467-99 (ASTM 2002a) were adopted to determine 

the residual shear strengths of the soils. The soil specimen is pre-sheared at a relatively large 

displacement rate (0.89 mm/min) for one revolution (a displacement of 267 mm), followed 

by subsequent shearing under a smaller displacement rate (0.036 mm/min) under several 

different normal stresses. The plot of shear stress versus normal stress gives the Mohr-

Coulomb failure envelope and the residual shear strength parameter values. 

Slope Stability Analysis and Back Calculation 

The calculation of global slope stability is normally expressed in terms of the factor 

of safety computed by means of limit equilibrium methods. Many methods are available to 

determine the factor of safety. In this study, the Morgenstern and Price (1965) method was 

adopted due to the non-circular nature of the failure planes. The method satisfies all 

conditions of equilibrium, and is applicable to any shape of slip surface. The computations of 

the slope analysis were performed using the computer program Slope/W (GEO-SLOPE 

2004). 

When a slope failure occurs, the shear strength of the soil is mobilized along the full 

length of the slip surface. The mobilized strength can be estimated by performing a back 

calculation. Knowing that the factor of safety is equal to unity, analyses are performed to 

determine what the mobilized soil shear strength must have been for the failure to have 

occurred. Duncan and Stark (1992) noted that back calculation has been found to be effective 

where conditions are simple, and attractive for determining soil strengths, because it avoids 

many of the problems associated with laboratory and in-situ tests. The principle limitation of 

back calculation is the fact that the stress conditions at the time of failure are not precisely 

known. Also, as a slope failure provides a single piece of data, assumptions are inevitably 

required to determine values of both c' and (j)', and these values are not unique. 
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CASE HISTORY I - ALBIA SLOPE 

Site Description and Characterization 

The Albia slope is located along Highway 34 MP 171.7, three miles west of Albia, 

Monroe County, Iowa. In this area, shale residuum is the parent material. The shale consists 

of a series of beds deposited during the Des Moines sedimentary cycle in the Pennsylvanian 

period (286 to 320 million years ago) (Eicher et al. 1984). These beds include shale of 

different colors and textures, conglomerates, and a few organic coal layers (USDA 1984). 

The exact time of the slope failure is unknown. Failure or deformation may have 

occurred prior to 2001 based on the accounts of a nearby resident. The failure features of 

scarp head and bulges of the slide (Figure 3.3) appeared to be at least a few years old based 

on vegetation growth when the slope was investigated in July 2004. The representative 

profile for the slope is showed in Figure 3.4. It shows that the original slope had an overall 

sloping angle of about 11 degrees down-dipping towards Highway 34, a maximum length of 

40 m and a maximum height of 8 m. It had a curved scarp near the top with a maximum 

height of 1.5 m. The scarp extended along the two wings of the slope and ended at the toe of 

the slope (Figure 3.3). The width of the slope at the toe was about 70 m (along the highway). 

There were a few bulges at the surface of the slope. 

A total of four boreholes were drilled manually along the slope profile at the locations 

shown in Figure 3.4. The boreholes showed that the slope was composed of brown to grey, 

highly weathered clay shales which were generally medium stiff to stiff. A thin layer of 

weaker soils appeared to exist at the lower portion of BH2, BH3 and BH4 where the borings 

were relatively easily advanced. All the boreholes were terminated when the borings reached 

very stiff, slightly weathered shale and could not be further preceded due to the limitation of 

the manual operation. Ground water table in boreholes BH2, BH3 and BH4 was observed 

and measured 24 hours after the boring. Ground water was not present in BH1. 

Particle-size distribution analyses on three shale samples obtained from the lower 

portion of BH2 and the mid portion of BH4 indicated that the soils are composed of 49% 

clay, 48% silt and 3% sand on average. The soils were found to have natural moisture content 
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of 13 to 34%; and liquid limit of 61% and plasticity index of 35% on average. The total unit 

weight of the shale varied from 18.0 to 19.1 kN/m3. All samples are classified as high 

plasticity clay (CH) according to the Unified Soil Classification System (ASTM 2002b). 

Borehole Shear Test Results 

A total of nine BSTs were performed mainly in the lower portion of the boreholes 

(Figure 3.4), and the results are presented in Figure 3.5. The BST results appeared reliable as 

indicated by the values of coefficient of correlation (R2), which were generally larger than 

0.99. The results show that the effective internal friction angle (<(>') for the shales ranged from 

11° to 40°, and the effective cohesion intercept (c') varied from 5 to 22 kPa. The nine BST 

results had average <)>' value of 23.5° and c' value of 12.4 kPa with coefficient of variation of 

0.36 and 0.49, respectively. 

It is noteworthy that the BST at BH2 (3.2m) gave a shear strength envelope that is 

significantly lower than BSTs at higher elevations in the same boreholes (i.e., BSTs at BH2 

(2.0m) and BH2 (2.6m)) (Figure 3.5). The BST at BH3 (2.6m) and BST at BH4 (1.1m) also 

gave considerably lower strength envelopes as compared with other BSTs, especially those 

for BH1. Coincidently, the elevations of these three BSTs with relatively low strength 

envelopes were the same as the elevations where borings were relatively easily advanced 

during the manual drilling. These observations suggest that there could exist a relatively thin, 

weak zone of soil along the elevations of BH2 (3.2m), BH3 (2.6m) and BH4 (1.1m); and the 

slope could have slipped along this weak zone as indicated by the slip surface in the slope 

profile (Figure 3.4). The slip surface passed through the observed scarp and the toe of the 

slope, and was supported by the main features of the slope failure, i.e. the depression of the 

surface between BH1 and BH2 and the bulge at BH3 and BH4 (Figure 3.4). 

Ring Shear Test Results 

A total of four ring shear tests (RST) were conducted on reconstituted shale samples 

and the results are presented in Figure 3.6. All the results had R2 > 0.998, and the residual 

friction angle (<j)r') ranges from 5.9° to 6.8° with a small residual cohesion intercept (c/). The 
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residual shear strength parameter values are relatively low, which is consistent with the 

relatively high average liquid limit of 61% and average plasticity index of 35% of the shales 

(e.g., Mitchell 1993). 

Results of Slope Stability Analyses 

In order to investigate the possible conditions at pre-failure and end of failure of the 

slope, slope stability analyses and back calculations were performed considering different 

situations of slope geometry, ground water table location and shear strengths of the soil. As 

the geometry of the slope was significantly different between the pre-failure and end of 

failure conditions, and the location of the ground water table at pre-failure (or during the 

failure) of the slope was unknown, three situations (Table 3.1) were considered for slope 

analyses - (1) original ground surface assuming water table located on the original slope 

surface; (2) current ground surface assuming water table located on the current slope surface; 

and (3) current ground surface using current water table (observed during the slope 

investigation, see Figure 3.4). Assuming the water table is located on the slope surface 

represents the worst ground water conditions with respect to stability calculations. 

The shear strength parameters considered in the slope analyses included (A) the 

average shear strength parameter values measured by BST; (B) the lowest set of shear 

strength parameter values measured by BST; (C) back-calculated shear strength parameter 

values giving unity factor of safety based on conditions (1) (Table 3.1); and (D) shear 

strength parameter values measured by ring shear test (one of the four results were used since 

they are essentially the same, Figure 3.6). Factors of safety using the Morgenstern-Price 

(1965) method were calculated for the observed slip surface. As a simplifying assumption, 

the soil unit weight and shear strength parameter values were assumed constant through the 

soil profile for each analysis. 

The results of the slope stability analyses are summarized in Table 3.1. The results 

show that, the factors of safety for the original slope were much larger than 1.0 (2.52 and 

2.02) when using the average and lowest shear strength parameter values as measured by 

BST, even under the worst ground water conditions. These results contradicted the fact that 

the slope has failed and had a factor of safety of 1.0 at failure. Therefore, the shear strength 
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that was developed at failure must have been lower than these BST measurements. The back-

calculated shear strength parameter values (<(>' = 11.0° and c' = 4.5 kPa) gave factor of safety 

of 1.0, and indicated the possible shear strength that has been at the slope failure under the 

most unfavorable ground water conditions. Since a large displacement have occurred after 

the slope failure as indicated by the slope geometry (Figures 3.3 and 3.4), the soil should 

have reached the residual large strain state. At this case, the slope has a factor of safety of 

1.12 under the current ground water table conditions. This indicates the current slope is stable, 

which agrees with the fact that it is standing. However, use of the residual strength under 

conditions (1) and (2) resulted in factors of safety much less than 1.0 (0.48 and 0.66) (Table 

3.1), indicating that (a) shear strength must have been higher than the residual strength before 

or during the slope failure, as under conditions (1), i.e. shear strength had not dropped to 

residual value before or during the slope failure; or (b) the current slope will reactivate if the 

ground water table starts to rise before reaching the current slope surface, as under conditions 

(2). 

A series of back calculations were further performed to estimate various shear 

strength parameter values of the soil assuming various ground water table conditions, and the 

<j)' and c' values required to give factor of safety of 1.0 were obtained. The results are 

presented in Figure 3.7. It shows that the required <|)' and c values become smaller if the 

location of the ground water table becomes lower in the slope, as expected. For the slope 

failure under the most unfavorable ground water conditions, the c' value was estimated to be 

less than 4.5 kPa (point CI) if the <j>' value of 11.0°, the lowest <(>' value as measured by BST, 

is used. 

The changes of shear strength are also presented in terms of a Mohr-Coulomb failure 

envelope in Figure 3.8. It shows that drop of the shear strength after the slope failure is 

significant. From these changes, the brittleness of the soil, characterized by the brittleness 

index, can be evaluated. The brittleness index was defined by Bishop (1976) as the difference 

between the peak and residual strengths over the peak strength. With an estimated normal 

stress of 50 kPa, the peak and residual shear strengths are 34 and 7.5 kPa, respectively, 

giving a brittleness index of 0.78. 
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CASE HISTORY II - WINTERSET SLOPE 

Site Description and Characterization 

The slope is located at the west side of Highway 169, about three miles north of 

Winterset, Madison County, Iowa. According to the USDA (1975), the soils in this area 

mainly formed in loess, glacial till and shales. The oldest parent material is a series of beds 

deposited during a sedimentary cycle in the Pennsylvanian period. The beds consist of 

limestone, shale of different colors and textures, and sandstones. 

The slope started to move in 2003 and failed in 2004 (Kretlow 2004). The scarp of 

the slide appeared to be new when the slide was investigated in June 2004 as shown in Figure 

3.9. A representative slope profile is shown in Figure 3.10. The slope had an overall sloping 

angle of about 13 degrees up-dipping towards the highway, a maximum length of 33 m and a 

maximum height of 7 m. There was a nearly straight, steep scarp near the top of the slope 

with a maximum height of 1.7 m. The scarp extended along the side of highway for about 70 

m. Transverse cracks were present at the mid height of the slope. 

A total of four boreholes were drilled during the field investigation along the 

representative slope profile (Figure 3.10). Borehole BH1 was drilled with a rotary drilling rig; 

and boreholes BH2, BH3 and BH4 were drilled manually with a hand auger. The borings 

indicated that the slope was mainly composed of weathered clay shales of multiple colors of 

brown, grey and reddish. The soils were generally medium stiff to stiff. Slightly weathered 

shale with traces of limestone was encountered at the lower portion of BH1. BH2, BH3 and 

BH4 were terminated when the borings reached relatively strong soil and could not be further 

advanced with manual augering. The soils were relatively easy to drill manually before the 

strong zone was reached in BH2 and BH4. The ground water table in the four boreholes was 

measured 24 to 48 hours after the boring. The wet surface near the toe of the slope indicated 

near surface ground water at the toe of the slope. 

Particle-size distribution analyses on shale samples from lower portion of BH2 and 

BH3 indicated the soils were composed of 36% clay, 62% silt and 2% sand on average. 

Values of natural moisture content for the soils obtained from the boreholes were found to lie 

in the range of 16 to 31%, with a liquid limit of 55% and a plasticity index of 31% on 
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average. The total unit weight of the shale varied from 18.3 to 19.7 kN/m3. All the shales 

were classified as high plasticity clay (CH) according to the Unified Soil Classification 

System (ASTM 2002b, D2487-00). 

Borehole Shear Test Results 

A total of nine BSTs were performed for the Winterset slope and the results are 

presented in Figure 3.11. The results generally had an R2 > 0.98; and gave values of 18° to 

35° and c' values of 11 to 45 kPa. The nine BST results also had average <()' value of 24.4° 

and average c' value of 24.1 kPa with coefficient of variation of 0.27 and 0.46, respectively. 

BSTs at BH2 (2.7m) and BH4 (1.7m) gave shear strength envelopes that were much 

lower than BSTs in other locations of the slope (Figures 3.10 and 3.11). This strongly 

suggests that the slip surface passed through the zone near BH2 (2.7m) and BH4 (1.7m), as 

indicated in the slope profile (Figure 3.10). The slip surface was consistent with the 

experience of the manual boring, and was supported by the topographic features of the slope 

including the graben at BH2 and the surface crack between BH3 and BH4. 

Ring Shear Test Results 

A total of four ring shear tests were conducted on reconstituted shale samples, and the 

results are presented in Figure 3.12. The results, having R2 > 0.998, indicate that the residual 

frictional angles of the shales (tjV) vary from 12.0 to 16.3° with a small residual cohesion 

intercept (cr') ranging from 1.9 to 3.5 kPa. 

The shales in the Winterset slope have higher residual friction angles than those in the 

Albia slope (Figure 3.6), while they have lower clay content and lower values of liquid limit 

and plasticity index than the shales in Albia slope. These observations are consistent with 

those reported in the literature, i.e. lower clay content and lower values of liquid limit and 

plasticity index generally correspond to higher residual friction angle (e.g., Mitchell 1993). 
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Results of Slope Stability Analyses 

Slope stability analyses were performed for the Winterset slope in a fashion similar to 

that for the Albia slope, and the results are summarized in Table 3.2. The factors of safety 

were much larger than 1.0 (3.42 and 2.32) for the original slope when using the average and 

lowest shear strength parameter values as measured by BST under the worst ground water 

table conditions. Since the slope had a factor of safety of 1.0 at the time of failure, the shear 

strength that was developed at failure should have been lower in the failure zone than 

determined from the BST measurements. One set of the back-calculated shear strength 

parameter values yields <j)' = 18.0° and c' = 3.2 kPa for FS = 1.0. The current slope likely 

reached a residual state due to the large movement after the slope failure (Figures 3.9 and 

3.10). Thus the use of the residual shear strength is applicable. In this case, the slope has a 

calculated factor of safety of 1.22 under the field observed ground water table conditions. 

This agrees with the fact the current slope is safe and standing. On the other hand, use of the 

residual strength under conditions (1) and (2) resulted in FS value less than 1.0 (0.80 and 

0.96) (Table 3.2), indicating that the shear strength must have been higher than the residual 

strength during the slope failure if the water table was located on the slope surface 

(conditions (1)); or the current slope will reactivate and fail if the water table rises towards 

the current slope surface (conditions (2)). 

Various shear strength parameter values of the soil were also obtained by back 

analyses assuming different ground water table conditions. The (j)' and c' values required to 

give factor of safety of 1.0 are presented in Figure 3.13. It shows that the required c' values 

at the time of the slope failure was estimated to be less than 3.2 kPa (point C) with water 

table located on the slope surface, if the <|>' value of 18.0°, the lowest value of BST 

measurements, was used. The different shear strengths of the soil as used in the slope 

stability analyses are also presented in the form of strength envelopes in Figure 3.14. 

Similarly, the change of the shear strength was considerable before and after the slope failure. 
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DISCUSSION 

Strength Changes of the Soil 

In the previous stability analyses for the two slopes, several different shear strengths 

have been involved, which were obtained from BSTs, ring shear test and back-calculation. 

These shear strengths reflect the strength changes associated with the slope movement. The 

average strength values measured by BST (after averaging out the soil variation) can 

represent the peak strength, since the soils tested were essentially intact. The lowest strength 

values measured by BST can represent the partially softened strength, because the values are 

measured within or close to the failure zone where soils may have undergone some small 

displacement, as discussed previously. Partially softened strength was used to differentiate 

from the fully softened strength. The ring shear test measured the residual or the ultimate 

strength of the soil. 

The most uncertain part of the shear strength is the mobilized strength at the slope 

failure and its relationship with the fully softened shear strength. This issue has been 

extensively studied and reported by numerous researchers since 1960s (e.g., Skempton 1964; 

Bjerrum 1967). For the first-time slope failures in stiff shales as in this study, the fully 

softened shear strength is the lower bound for mobilized shear strength, as concluded by 

Mesri and Shahien (2003) after having reanalyzed 99 case histories of slope failures. In this 

study, a wide range of the possible mobilized shear strength was obtained from back-

calculations (Figures 3.7 and 3.13) due to lack of the knowledge of the ground water table 

conditions at failure. However, the range was greatly narrowed by the knowledge of the 

partially softened strength and the residual strength, as the magnitude of the mobilized shear 

strength must be limited between the partially softened strength and the residual strength. In 

addition, it has been generally recognized that there is a large drop-off of cohesion from the 

peak strength to the fully softened strength, and the cohesion for the fully softened strength is 

small or close to zero (Skempton 1964). Thus, the mobilized (fully softened) strength most 

probably has the <t>' value similar to the partially softened strength with cohesion near the 

residual strength, as indicated by points Cl, C2 or C in Figures 3.7 and 3.13. The mobilized 

strength further decreases to the residual strength after a large displacement. Hence, the 
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entire change of the shear strength is established for the soil in the slope as indicated by the 

strength paths in Figures 3.7 and 3.13 and the failure envelopes in Figures 3.8 and 3.14. In 

addition, the approach to estimate the mobilized shear strength could be considered as an 

improvement as opposed to use "engineering judgment or experience" (Duncan and Stark 

1992). 

Corresponding to the most probable mobilized shear strength as shown in Figures 3.7 

and 3.13, the most probable ground water table at the time of the slope failure can also be 

estimated. The ground water table at failure was estimated to be located within the elevation 

of 0 to -6.0 m for the Albia slope, and -1.5 m to -4.0 m for the Winterset slope. Apparently, 

these water tables are much higher than the measured water table (Figures 3.4 and 3.10). This 

suggests that high ground water table could have triggered the slope failure. 

Possible Failure Mechanisms of the Slopes 

The results of the slope stability analyses show that the original slopes would be 

stable when the shear strength parameter values obtained from BST are used under the worst 

ground water conditions (Tables 3.1 and 3.2). However, the calculated results contradict the 

fact that slope failures occurred. The reason for this contradiction could be attributed to 

progressive failure, which has been widely reported for stiff clays and shales in the literature. 

Progressive failure refers to the non-uniform mobilization of shear strength along a 

potential slip surface, and its mechanisms became better understood in the context of 

overconsolidated clays and clay shales in the 1960s (e.g., Skempton 1964; Bjerrum 1967; 

Bishop 1967). Basically, if the shear stress exceeds the available strength in a small zone 

along the slip surface of a slope, the excess loading will have to be transferred to adjacent 

zones. However, if the soils exhibit brittle or strain-softening behavior, the stress transfer is 

likely to lead to failure in adjacent zones as well. If equilibrium cannot be obtained at that 

time, the process will continue until failure conditions extend along the entire slip surface. 

Thus, failure, having been initiated at a single point, generally propagates resulting in the 

ultimate failure of the slope until it reaches a new equilibrium or stable condition. 

A major factor in the development of progressive failure is brittleness, which can be 

characterized by the brittleness index. The index is defined as the difference between the 
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peak and residual strengths over the peak strength (Bishop 1967). Apparently, the larger the 

difference between the peak and the residual strength is, the larger the value of the brittleness, 

or the more brittle the soil. Consequently, the possibility of progressive failure can be directly 

related to the value of the brittle index, with higher brittle index values being indicative of 

more potential problems. In this study, the difference between the peak strength and the 

residual strength for both slopes are larger, as can be seen from the strength changes (Figures 

3.8 and 3.14). For example, with an estimated effective normal stress of 50 kPa for the two 

slopes, the shear strength can drop from a peak value of 34 kPa to a residual value of 7.5 kPa 

for the Albia slope based on Table 3.1, giving a brittleness index of 0.78; and drop from a 

peak value of 47 kPa to a residual value of 14 kPa for the Albia slope based on Table 3.2, 

giving a brittleness index of 0.70. The large brittleness index values strongly suggest that 

progressive failure have contributed to the two slope failures described. 

SUMMARY AND CONCLUSIONS 

Post-failure investigations were conducted for two similar stiff clay shale slopes of 

large movement using in-situ Borehole Shear Tests (BST) and laboratory ring shear test. The 

BST measured the peak strength and partially softened strength, and the ring shear test 

measured the residual strength of the soils. Slope stability analyses and back calculations 

were performed on the observed slip surface of each slope. A range of mobilized shear 

strength at failure, with the fully soften strength being its lower bound as reported in 

literature, were obtained due to the unknown ground water conditions at failure. The most 

probable mobilized shear strength at failure was estimated based on the knowledge of the 

partially softened strength and residual strength, which could be considered as an 

improvement as compared to the empirical method of using "engineering judgment or 

experience". Based on the approach in the study, the change of the strengths, or the "strength 

path", due to the slope movement, can be best established. The information, together with the 

information on the failure zones and the failure mechanism of the slopes, will be useful in 

slope repair design. The failures of the slopes were attributed to progressive failure, and 

likely triggered by high ground water tables. 
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Figure 3. 1 Post-failure slope investigation processes involving BST and ring shear test 

(a) (b) 

Figure 3. 2 Shear plates of a Borehole Shear Test device 

(a) Cross-section of BST in a borehole before vertical shearing (Handy 2001); 

(b) Shear plate covered with soil after testing. 
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Figure 3.12 Ring shear test results for Winterset slope 
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Table 3. 1 Summary of the Slope Analysis Results for Albia Slope 

Shear Strength Parameter Factor of Safety ** 

No. Source Description 
4»' 

(deg.) 

c' 

(kPa) 
(1) (2) (3) 

A BST, average Peak strength 23.5 12.4 2.52 3.44 5.12 

B BST, lowest set Partially softened 11.0 13.0 2.02 2.72 3.47 

C Back-calculated* Fully softened 11.0 4.5 1.00 1.37 2.12 

D Ring shear Residual strength 6.8 1.6 0.48 0.66 1.12 

Notes: (1) - original ground surface with water table on the original slope surface; 

(2) - current ground surface with water table on the current slope surface; 

(3) - current ground surface with current water table as measured; 

* Based on Conditions (1); 

* * On the specified slip surface using Morgenstern-Price (1965) method. 

Table 3. 2 Summary of the Slope Analysis Results for Winterset Slope 

Shear Strength Parameter Factor of Safety ** 

No. Source Description 
4>' 

(deg.) 

c' 

(kPa) 
(1) (2) (3) 

A BST, average Peak strength 24.4 24.1 3.42 3.95 4.49 

B BST, lowest set Partially softened 18.0 16.0 2.32 2.69 3.15 

C Back-calculated* Fully softened 18.0 3.2 1.00 1.23 1.62 

D Ring shear Residual strength 12.0 3.5 0.80 0.96 1.22 

Notes: same as Table 3. 1. 



www.manaraa.com

47 

CHAPTER 4. CHARACTERIZATION AND ENGINEERING PROPERTIES OF 
CLAY SHALES FOR AN EMBANKMENT SLOPE IN IOWA 

A paper submitted to Engineering Geology, Elsevier 

Vernon R. Schaefer1, Hong Yang2, and David J. White3 

ABSTRACT 

The Sugar Creek embankment slope project contains highly weathered, 

overconsolidated clay shales predicted to involve global slope instability when an empirical, 

conservative shear strength value was used in the initial slope stability analyses. The initial 

analyses motivated a comprehensive geotechnical investigation including extensive basic 

property tests, shear strength testing including the in-situ Borehole Shear Test (BST), 

laboratory direct shear tests, triaxial compression tests and ring shear tests. The primary 

objective of the investigation was to better characterize the shales according to weathering 

classification and to obtain realistic, specific shear strength parameter values for more 

detailed slope stability analyses. The study suggests that classification of weathering of the 

shales correlates well with the peak shear strength values of the shales, i.e. a higher 

weathering degree consistently corresponds to lower shear strength values; but does not 

correlate well with residual shear strength values or other soil index properties. The large 

database of shear strength parameter values obtained from the in-situ tests reasonably agrees 

with the results of the laboratory tests. The paper represents a detailed case study for using 

geotechnical information including in-situ BST measurements to characterize weathered 

shale materials for slope stability analyses. 

Keywords: Characterization; Clay shale; Weathering; Shear strength; Residual strength; 
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INTRODUCTION 

The safe and economical design of slopes and structures requires the best possible 

assessment of subsurface ground conditions, particularly the strength of the soils encountered, 

and the best evaluation of the design strength parameters. Soils normally have wide ranges of 

geotechnical properties due to their composition and complex geological processes and 

histories (Mitchell 1993). Further complications arise as a consequence of the differences 

among the results obtained from various in-situ and laboratory test methods. Among the 

many types of earth materials, shales probably create more potential slope instability 

problems than any other material (Yagiz 2001). One of the major problems engineers 

encounter in shales with respect to slope analysis is the determination and selection of the 

shear strength parameter values. Lack of information on shear strength values specific to a 

site may result in an over-conservative design. On the other hand, proper in-situ and 

laboratory tests can provide shear strength values that are specific and realistic to the site, and 

consequently result in both safe and economical design. 

This paper describes the characterization of clay shales based on weathering 

classification for a proposed embankment slope project in Iowa, and presents the results of 

shear strength values of the soils obtained from various test methods. The tests include in-situ 

Borehole Shear Test (BST), and laboratory direct shear test, triaxial compression test, 

unconfined compression test and ring shear test. The weathering classification of shales was 

related to basic properties and shear strengths. The shear strengths of the soils, particularly 

the highly weathered shale, obtained from different test methods are compared, and the 

possible reasons for the differences of the shear strengths are discussed. A preliminary 

engineering evaluation of the shales with respect to slope stability is also described. 

PROJECT BACKGROUND 

The Sugar Creek embankment slope project is located in Wapello County, Iowa 

(Figure 4.1). Prior to the detailed site investigation, the approach embankment fills on both 

sides of Sugar Creek were to be designed using pile-supported abutments to support the 
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highway bridge across the creek. Slope analyses indicated that, based on the preliminary 

design guidelines of Iowa Department of Transportation (IaDOT), there was potential global 

instability for the slopes in front of the abutments with the slip surfaces passing through the 

highly weathered sloping shale interface using a friction angle equal to zero and cohesion of 

10 kPa. As a result, ground improvement and retaining wall alternatives were proposed with 

estimated costs ranging from 3 to 5 million dollars (Farouz et al. 2005). In view of the high 

costs, a comprehensive supplemental subsurface exploration and test program was developed 

and performed in 2004 at a small cost to supplement the preliminary investigation conducted 

in 2001. The purpose of the program was to verify that the shear strength parameters for the 

soils, especially for the highly weathered shale, used in the slope stability analyses were 

reasonable; and to possibly develop more realistic and site specific design parameters to 

optimize the design, justify and/or possibly reduce the estimated costs of any improvement 

measures, if required. 

During the initial field investigation program for the project in 2001, a total of 16 

boreholes were drilled. Though much information was obtained on the soil stratification for 

the site, no shear strength parameter values for the shales were measured. Therefore, in the 

investigation program of 2004, an additional ten boreholes were drilled and extensive in-situ 

and laboratory tests were conducted to obtain the soil shear strength parameter values of the 

project. Based on the measured shear strength of the soils obtained, the stabilities of the 

slopes were re-evaluated and a substantial savings resulting from the proposed ground 

improvement measures is expected to be realized. 

GEOLOGY AND SITE CHARACTERIZATION 

Area Geology 

Iowa is commonly divided into seven regions based on the various landforms found 

in each region (Prior 1976; Prior 1991), and Wapello County is located on the Southern Iowa 

Drift Plain (Figure 4.1). The landscapes are characterized by gently rolling hills and valleys, 

which have been formed by hundreds of thousands of years of erosion and stream 

development. Underlying much of the region is a thin layer of loess, a thick layer of glacial 
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drift, and finally bedrock of limestone, shale, and sandstone. Alluvium is common on the 

flood plain of the region's drainages. 

According to the USD A (1981) Soil Survey Report, most of the soils in Wapello 

County formed in glacial till, loess and alluvium. Clay shale is the oldest parent material 

consisting of a series of beds deposited during the Des Moines sedimentary cycle in the 

Pennsylvanian period (286 to 320 million years ago) (Richer et al. 1984). Thin beds of 

sandstone and coal are encountered between the shale layers in places. In the project site, 

loess-derived and till-derived soils are present. The bedrock primarily consists of clay shale, 

with sandstone and thin limestone layers. Loess and till were not encountered in the project 

site. These soils have probably been subjected to surface erosion which occurred commonly 

in river valleys in this area (Prior 1976; USDA 1981). 

Site Geology and Characterization of the Shales 

A total of 26 mechanically drilled boreholes was distributed on the two sides of Sugar 

Creek to cover an area of about 200x50 m2 for the project site. The subsurface soils of the 

project site can be roughly divided into two apparently distinguishable groups, i.e. the 

alluvium layer and the underlying shales. The alluvium layer is brown or light grey, and 

mainly consists of lean clay with sand and small amounts of gravel underlain by clayey sand 

and silt; or a mixture of clay, silt, sand and small amounts of gravel. The compositions of this 

layer vary throughout the site depending on the locations relative to the river and the 

floodplain. Some of the soils were loose and likely unconsolidated. The thickness of the 

alluvium ranges from 2.7 to 8.4 m. 

The shales underlying the alluvium layer have multiple colors of brown, grey and 

black, etc., and vary spatially and with depths. The shales have relatively low shear strength 

in the upper portion, which behaves like soil; but become stronger with increasing depth, and 

behaves like rock. In fact, shales have been appreciated as the boundary materials between 

soil and rock (Yagiz 2001). It was observed at the project site that the shear strength of the 

shales can be associated with the weathering degree, which is directly related to the depths of 

the shales. Therefore, it is desirable to classify the shales and to obtain their shear strength 
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values for the project based on the weathering degree, so that it will be helpful for design and 

construction purposes. 

Weathering classification for the characterization of rocks has been proposed by 

various researchers (e.g., Dearman 1976; Turraul and Gurpinar 1997). Various classification 

systems for shales have also been developed based on a geological scheme (e.g., Picard 1971; 

Spears 1980), and based on an engineering scheme (e.g. Underwood 1967; Morgenstern and 

Eigenbrod 1974; Wood and Doe 1975). However, a weathering classification with respect to 

the characterization of shales appears lacking in the literature. This could be due to the fact 

that the term shale is used to designate all argillaceous, fine-grained varieties of sedimentary 

rock that formed from consolidation of clay, silt and mud; thus the weathering classification 

may be too complex and unpractical to be generalized. On the other hand, it is desirable to 

know the engineering properties of the shales and the extent of the shales of different 

weathering degrees for the site, so that an economical design of slopes and structures and 

subsequent construction can proceed, as noted previously. Therefore, attempts were made to 

carry out weathering classifications of shales for their characterizations specific to the site. 

Instead of using six weathering grades for rocks, such as those in Dearman (1976) (i.e., 

residual soil; completely, highly, moderately and slightly weathered; and fresh), three 

weathering grades (i.e., highly, moderately, and slightly weathered) were adopted for the 

project for the purpose of simplicity and convenience, while maintaining sufficient detail to 

delineate the layers for slope stability analyses. 

The classification of the shales using the three weathering grades resulted in three 

layers of shales for the site, i.e. highly weathered shale (H.W.Sh), moderately weathered 

shale (M.W.Sh), and slightly weathered shale (S.W.Sh). The distinction of the three 

weathering grades or layers was essentially a combination of the classifications using the 

geological scheme and the engineering scheme. The geological aspects mainly included color, 

texture and structure of the shales as in the field visual observations; and the engineering 

aspects mainly included soil consistency, and were supplemented with the field testing 

results of pocket penetrometer and standard penetration tests, and the split spoon refusal for 

S.W.Sh. In general, H.W.Sh was relatively soft and weak, S.W.Sh was relatively hard and 

strong, and M.W.Sh was the transition zone between H.W.Sh and S.W.Sh. S.W.Sh was close 
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to fresh rock and was identified by split spoon refusal, or where the N-value in standard 

penetration test was below 50 blows or greater per 150-mm increment. Based on the 

classification of the three shale layers, in-situ and laboratory tests were performed to obtain 

the engineering properties for each layer. 

The surface of H.W.Sh generally parallels the existing ground surface. It has a gentle 

slope ranging from 12.5:1 (H:V) to 10:1 (H:V) on the north side of the creek, and a relatively 

steeper slope of 3:1 (H;V) on the south side of the creek. The thickness of H.W.Sh ranges 

from 0 to 3.7 m on the north side and 0.5 to 4.7 m on the south side of the creek, and most of 

the H.W.Sh is less than 3 m thick. The H.W.Sh was underlain by M.W.Sh, which has a 

thickness ranging from 0 to 5.7 m on the north side and 1.5 to 8 m on the south side of the 

creek. M.W.Sh was underlain S.W.Sh, where the boreholes were terminated. On the south 

side of the creek, a nearly horizontal, 0.5-0.9 m thick limestone seam was encountered in the 

M.W.Sh layer. The boring results indicated that the spatial distributions of the shales were 

highly variable both vertically and laterally. The 24-hour ground water table was gently 

sloping towards the creek. A typical slope section showing the soil profiles and water table is 

presented in Figure 4.2. 

BASIC AND INDEX PROPERTIES OF THE SHALES 

Grain Size Distributions 

Basic properties for representative soil samples with emphasis on the shales were 

investigated. Grain size distribution analyses of the shales were performed for 11 samples of 

H.W.Sh and M.W.Sh from different boreholes in accordance with ASTM D422-63 (ASTM 

2002a). The results show that the shales have 31 to 61% clay fraction (<0.002mm), 39 to 

67% silt fraction and less than 9% sand (>0.075 mm), except for one H.W.Sh sample having 

17% sand. 

The clay contents generally increase with the decrease in depth (Figure 4.3(a)), or 

with the increase in weathering degree of the shale (since weathering degree is higher near 

the surface). This suggested that the higher degree of weathering resulted in the formation of 

more clay minerals. However, the classification of the weathering degree itself does not show 



www.manaraa.com

53 

a definite relationship with the depth as indicated by the scattering of the M.W.Sh and 

S.W.Sh at different depth in Figure 4.3(a). This observation suggests that classification of 

weathering can not depend on the results of the grain size analysis or the clay fraction only, 

but may be related to other factors such as mineralogy of the soils. 

Atterberg Limits 

Atterberg limits for the shale samples were determined following the descriptions of 

ASTM D4318-00 (ASTM 2002b), and the results are presented in Figures 4.3(b) and 4.3(c). 

The results show that liquid limits (LL) of the shales range from 37 to 72%, and plasticity 

indexes (PI) range from 16 to 44%. LL and PI of the shales have good correlation with the 

clay fraction (CF) of the shales. The regression result between PI and CF indicates an activity 

(as defined by Skempton 1953) of 0.66 for the shales. All the shales are located between the 

A-line and the U-line in the Casagrande's plasticity chart, thus classified as either low 

plasticity clay (CL) (LL<50%) or high plasticity clay (CH) (LL>50%) according to the 

Unified Soil Classification System (ASTM D2487-00, ASTM 2002c). 

The results also show that Atterberg limits do not exhibit a clear relationship with the 

weathering degree of shales, i.e., the M.W.Sh and the S.W.Sh does not necessarily have low 

CF or LL. This observation suggests that the classification of the weathering cannot be 

purely based on the index properties of the soils. 

Mineralogy of the Shale 

X-ray diffraction (XRD) analysis on random oriented bulk soil samples were 

performed for ten shale samples including H.W.Sh, M.W.Sh and S.W.Sh, from different 

depths of different borings. One of the typical XRDs for the H.W.Sh is presented in Figure 

4.4. The minerals identified are summarized at the bottom of the diffractogram. In general, 

quartz, kaolinite and illite were found in the XRDs for all the shale samples. Montmorillonite 

was discovered in H.W.Sh only; and cristobalite and pyrite were observed in two of the four 

H.W.Sh samples. These results suggest that the montmorillonite may have been resulted 

from the complete weathering of the shale, while the less weathered shale only produced 
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kaolinite and illite. In addition, the presence of the montmorillonite is also consistent with the 

relatively high LL of the shales as observed from the Atterberg limits tests. 

SHEAR STRENGTHS OF THE SOILS 

Results of In-situ Borehole Shear Tests 

Various in-situ test methods are available for geotechnical field investigations. 

Borehole Shear Test (BST) and Rock BST are probably the unique ones as they provide 

direct measurements of in-situ shear strength parameter values of soil and rock (Handy and 

Fox 1967; Handy et al. 1976). Basically, a series of direct shear tests are performed on the 

inside of a borehole. Normal stress is applied to the wall of the borehole through a pair of 

shear plates, and the peak shear stress is measured in-situ separately and concurrently. Thus, 

the internal friction angel (<j)') and cohesion intercept (c) of the soil and rock are determined 

from the Mohr-Coulomb failure envelope. Total testing time for a typical test with 4 to 5 data 

points is approximately 30 to 60 minutes depending on soil type (Handy 1986). The BST is 

normally a consolidated-drained test as demonstrated by the pore pressure measurements 

during the test (Demartinecourt and Bauer 1983). The rate of the shear head displacement is 

generally 0.05 mm/s (Wineland 1975). 

In this project, a total of 33 BSTs and 2 Rock BSTs were performed at different 

layers in the 10 borings of 75 mm in diameter, with emphasis on the H.W.Sh. All the results 

show that the tests were well performed as revealed by the large values of coefficient of 

correlation (R2) between the shear stresses and the normal stresses, which are generally larger 

than 0.99. Examples of the test results are presented in Figure 4.5(a), which shows an 

increased shear strength of the shales with increased depths. Figure 4.5(a) also shows that 

reduced shear strength was obtained when a "residual" BST or a repeated BST was 

performed on the same elevation of the borehole. The test results for all the H.W.Sh are 

shown in Figure 4.5(b), which indicates that the shear strength parameter values of the 

H.W.Sh are highly variable. The overall average strength parameter values are <j)' = 13.4° and 

c = 30 kPa; the interpreted upper bound values are <j)' = 16.7° and c' = 55 kPa, and the 

interpreted lower bound values are <(>' = 9.6° and c' = 5 kPa. 
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The variations of the shear strength values are further illustrated by the plot for 

all the shales in Figure 4.5(c), and by the summary of statistical results in Table 4.1. Despite 

the variation of the shear strength values, the general trend that the shear strength values 

increase with the decrease in weathering degree is apparent. H.W.Sh generally have low 

shear strength values; and S.W.Sh generally have high shear strength values, mainly 

exhibited by the much higher cohesions. M.W.Sh have shear strength values between 

H.W.Sh and S.W.Sh indicating a transition layer. These observations suggest that the shear 

strength values of the shales are well correlated with the weathering classification, indicating 

the weathering classification scheme is valid. It is also note-worthy that the average shear 

strength values of H.W.Sh, which are <|>' = 12.8° and c' = 33.2 kPa, are much higher than that 

of c = 10 kPa as assigned by the IaDOT design guidelines prior to the tests. 

Results of Direct Shear Tests 

A total of 20 consolidated drained direct shear tests (DS) were performed in the 

laboratory, which included four tests on the alluvium soils, ten tests on H.W.Sh, and six tests 

on the M.W.Sh. The tests were performed on undisturbed Shelby tube soil samples following 

the procedures of ASTM D3080-98 (ASTM 2002d). Each test comprised three to five 

specimens. The size of the specimens was typically 63.5 mm in diameter and 20.1 mm in 

height. The loading rate of the shear force was 0.025 mm/min. 

The test results show that R2 values are generally larger than 0.99 indicating the 

effectiveness of the tests, though R2 values as low as 0.91 were also observed for a few tests, 

which may be due the soil sample variability. As an example, DS results for a H.W.Sh are 

presented in Figures 4.6(a) and 4.6(b). The peak strength for the drained DS specimens 

occurred after a displacement of about 1 to 5 mm (correspond to 1.6 to 7.9% of strain). With 

further displacement the specimens softened, and there was little difficulty in distinguishing 

peak strength from fully softened strength (as defined by Skempton 1985). The failure 

envelopes gave the peak and fully softened strength values as shown in Figure 4.6(b). It is of 

interest to note that the stress displacement curves (Figure 4.6(a)) do not show significant 

decrease in shear strength with increasing displacement. This indicates that the displacement 

required to reach residual strength should be significantly larger than what was obtained in 
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the direct shear apparatus (7 mm). Skempton (1985) stated that an intact clay sample requires 

a minimum displacement of 100 to 500 mm to reach a final steady residual value in a ring 

shear test. The ring shear test results are presented in a later section. 

The DS test results for all the H.W.Sh are presented in Figure 4.6(c), which shows the 

large variation of the shear strengths of the soil. The apparent average strength parameter 

values were = 19.5° and c' = 26.6 kPa, and the suggested lower bound and upper bound 

values were 0.54»' and 1.5<t>' (with the same c' value), respectively. The variability of the shear 

strengths of the soils were similarly illustrated by the statistical results as summarized in 

Table 4.2. The results show that the H.W.Sh had average shear strength parameter values of 

<j)' = 21.4° and c' = 20.4 kPa, which are quite close to the apparent average values as shown in 

Figure 4.6(c). 

The relatively high cohesion intercept of the peak strength failure envelope is typical 

of an overconsolidated clayey soil (e.g. Skempton 1964). This is because the 

overconsolidated soil, having once been subjected to a higher preconsolidation pressure, is in 

a dense state with respect to the current confining pressure. As a result, a cohesion intercept 

of the failure envelope is exhibited after shearing (Anderson and Sitar 1995). 

Overconsolidation could be the result of erosion and the subsequent removal of overburden 

stress on the indurated shale. The high cohesion intercept could also be the result of soil 

structure imparted by cemented bonds within the soil, i.e. the soil has structure as a result of 

cementation and bonding of the soil fabric (Mitchell 1993; Anderson and Sitar 1995). 

Results of Triaxial Compression Tests 

Two consolidated drained triaxial tests (CD) were performed on Shelby tube samples 

of H.W.Sh from borehole CH1010 following the procedures of ASTM D4767-95 (ASTM 

2002e). The size of the samples was 72 mm in diameter and 150 mm in height. Stress paths 

for one of the tests are presented in Figure 4.7(a), which indicates peak shear strength 

parameter values of <j)' = 27.6° and c' = 20.6 kPa. The other CD test gave peak strength values 

of <(>' = 33.7° and c' = 0 kPa. The stress-strain curves of the tests indicated that the tests 

exhibited stress softening behavior with the peak strengths at 3 to 4% of axial strain. The 
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curves of the volume change versus axial strain showed that the volume changes were first 

negative then became positive after 6 to 8% of axial strain, indicating that the shales were 

over-consolidated. 

Consolidated undrained triaxial tests (CU) were also performed on Shelby tube 

samples, with four tests on H.W.Sh samples of different boreholes and two tests on the silty 

clay of the alluvium layer. The tests followed the procedures as described in ASTM D4767-

95 (2002e). Stress paths of the CU test on H.W.Sh from borehole CHI010 are presented in 

Figure 4.7(b). Tests ended at 16% of axial strain for the three specimens. The results show 

that at the relatively low confining pressure (specimens A and B), negative pore pressures 

were induced at the end of the tests, which were indicated by the total stress being lower than 

the effective stress. These observations indicate that the shales were over-consolidated. 

However, at a relatively high confining pressure (specimen C), positive pore pressure was 

induced throughout the test, indicating that the preconsolidation pressure must be lower than 

the confining pressure as applied for the specimen C, which was about 400 kPa. From the 

failure envelope, the peak shear strength parameter values were found to be = 27.5° and c' 

= 4.0 kPa, which agreed with the <))' value obtained from the CD test, but with a smaller c' 

value. 

To show the overall CU test results on H.W.Sh, the effective principal stresses at 

failures for all the tests were plotted in a p'-q diagram as shown in Figure 4.7(c). The plots 

show considerable scatter owing to the shale sample variations. Regression analysis resulted 

in overall shear strength parameter values of (j)' = 25.5° and c = 10.0 kPa, which are close to 

the average values of (j)' = 26.6° and c = 5.7 kPa obtained from the statistical results of the 

four CU tests. The statistical results of CU tests are summarized in Table 4.3. 

Results of Unconfined Compression Tests 

A total of four unconfined compression tests were performed on cored samples of the 

S.W.Sh to determine their unconfined compressive strengths (qu). Tests were performed 

following ASTM D2166 (ASTM 2002f). The size of the specimens was 50.8 mm in diameter 

and 95.3 mm in height. The loading rate was 2% of axial strain per minute. The test results 
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are presented in Figure 4.8. The results show that the required axial strain for the shale to 

reach peak strength was about 6 to 7%. The qu values ranged from 360 to 640 kPa, which 

indicate that the shales were hard (Terzaghi et al. 1996). The results also show in general that 

the deeper the shale (thus the lesser the weathering), the higher the qu value, which was an 

indication of deeper shale being less weathered. 

Results of Ring Shear Tests 

The shear strength of the soil can drop from peak value to the residual value after 

large displacement, and the drop can be significant for materials with large amount of clay 

minerals, particularly platy minerals (Skempton 1964, 1985). The drop in strength is 

attributed to the clay particle reorientation parallel to the direction of shearing (Lambe and 

Whitman 1979; Bromhead and Dixon 1986). The residual strength is often related to long-

term stability problem and areas with landslide history, bedding planes or folded strata, and 

reactivation of old landslides (Skempton 1985). Thus, it is desirable to investigate the 

residual strength of the shales for the project. 

The Bromhead (1979) ring shear apparatus was used in the study due to its simplicity 

in operation and its availability. In the apparatus, the ring shaped specimen has an internal 

diameter of 70 mm, an external diameter of 100 mm and a thickness of 5.0 mm. Drainage is 

provided by two porous bronze stones fixed to the upper platen and to the bottom of the 

container. Multistage test procedures as described in ASTM (D6467-99) (2002g) were 

adopted. The specimen was prepared on shale passing US sieve No. 50 (0.30 mm) and 

remolded at a water content near the plastic limit to minimize the sample settlement during 

the consolidation. At the end of the primary consolidation, the test specimen was pre-sheared 

at a relatively high displacement rate (0.89 mm/min) for one revolution (a displacement of 

267 mm) and followed by subsequent shearing with a lower displacement rate (0.036 

mm/min) under different normal stresses (typically 100, 200 and 400 kPa). The plot of the 

shear stress versus the normal stress gave the Mohr-Coulomb failure envelope and the 

effective residual shear strength parameter values. 

A total of 14 ring shear tests were performed on shale samples obtained from 

different depths of different boreholes, which corresponded to the shale samples for the index 
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property tests. Typical test results are presented in Figures 4.9 (a) and 4.9(b). It can be seen 

that the shear stress became constant under a specific normal stress once the shear surface 

has been formed after a relatively large displacement (normally larger than 200 mm). The 

subsequent displacement under a new normal stress is normally 10 mm to achieve constant 

shear stress. The correlation between the shear stresses and the normal stresses was very high, 

generally having an R2 value larger than 0.999 since the tests are performed on exactly the 

same soil. 

The residual strength depends on the percentage of the clay particles that can be 

reoriented during the shearing and the ability of these particles to be reoriented. Therefore, 

many attempts have been made to correlate the residual strength parameter value, <j)r, with the 

soil index properties (e.g., Voight 1973; Kanji 1974; Lupini et al. 1981; Mesri and Cepeda-

Diaz 1986; Collotta et al. 1989; Stark and Bid 1994). Recently, a correlation of <j)r with soil 

mineralogical composition was also made by Tiwari and Marui (2005). Generally, the 

correlations with index properties proposed by the different researchers vary significantly, 

indicating "the correlations of residual friction angles with the soil index properties cannot be 

general" as noted by Lupini et al. (1981); and the correlation for clay shale in one geologic 

formation can not be necessarily used in another geologic formation (Beene 1969). In this 

study, the c|>r values for the 14 tests on the shale samples were plotted against the plasticity 

index (Figure 4.9(c)). The plot shows that (|>r generally decreased with the increase in the 

plasticity index, which agreed with those reported in the literature. A correlation that was 

similar to the form proposed by Kanji (1974) was also obtained as shown in the figure. This 

correlation may be used to estimate the residual shear strength values of the shales for the site. 

On the other hand, Figure 4.9 (c) did not show a clear correlation between the weathering 

degrees and the residual friction angles of the shales. 

DISCUSSION OF THE SHEAR STENGTH VALUES 

The test results show that the shear strength values obtained from BST, DS and CU 

for each soil layer do not match exactly, though they are comparable and in reasonably 
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agreement (Tables 4.1, 4.2, and 4.3). Several reasons may contribute to the discrepancies, 

which include the experimental errors, the soil variability and soil inherent properties. 

For the concern on the experimental error in BST, Lutenegger and Timian (1987) 

investigated the reproducibility of BST results in soft and medium consistency marine clays. 

They found that there was no difference in the test results between an experienced operator 

and an inexperienced operator; and test results obtained by ten inexperienced operators 

generally fell within 95% confidence limits. Their findings confirmed that BST is simple to 

operate, and the variability of soil strength values caused by BST testing method could be 

essentially eliminated. As for DS and CU tests, since the tests are under well-controlled 

conditions and have become routine operations in laboratory, their effects on the soil strength 

variability can also be neglected. In fact, DS tests and CU (or CD) tests should give 

essentially same results for the same soil, as reported by Lambe and Whitman (1979) that 

comparisons between the value of (j)', from triaxial and direct shear tests, after averaging out 

experimental errors in the determination of the values, yield results that differ generally by 

no more than two degrees. All these observations suggest that the experimental errors should 

not have been the major contributors to the differences between the soil strength values from 

different test methods. 

Soil variability could have contributed to the discrepancy of the results among 

different test methods. The soils tested by BST could not be exactly identical with those 

tested by DS and CU, even the in-situ BST locations have been intended to be the same or 

very close to the locations where undisturbed soil samples were collected and tested in 

laboratory. This may be especially true for the M.W.Sh, for which the c values from BST 

(Table 4.1) are much higher than the c' values from DS tests (Table 4.2). 

Another reason responsible for the difference between the shear strength values from 

different tests could be due to the inherent characteristics of the soils. This can be illustrated 

by comparing the strength values from BST and DS (and CU), especially the average shear 

strength values. It can be seen that the values from BST are generally lower than those 

from DS and CU, while the c' values from BST are generally higher than those from DS and 

CU, for both the alluvium and H.W.Sh, as reflected by the average values in Tables 4.1 and 

4.2. These observations are also illustrated in Figure 4.10, showing the plot of c' versus (j)' of 
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the H.W.Sh from BST, DS and CU; and in Figure 4.11, showing the average strength 

envelopes for both the alluvium and the H.W.Sh from BST, DS and CU test methods. The 

comparison should be promising at least on the results of H.W.Sh as obtained from BST and 

DS, since they contained the same, relatively large number of tests (i.e. 10 tests, Figure 4.11). 

These average shear strength values should have reflected the general behavior of the soils 

with respect to shear strengths of the H.W.Sh. 

Since a BST yields a vertical failure surface, and a DS test yields a horizontal failure 

surface in the soil, the test results reflect the shear strength of the soil in two orthogonal 

directions. Thus, the different shear strengths as obtained in two different directions may 

reflect the strength anisotropy of the soil. Strength anisotropy has long been realized by 

researchers such as Skempton and Hutchinson (1969), who reported the anisotropy of 

undrained strength for London Clay and found that in terms of effective stress, the results of 

tests where shearing occurs in horizontal directions are 12 to 25% lower than of tests where 

shearing occurs at vertical directions. For the H.W.Sh in this study, the results show that the 

shear strength in horizontal direction as tested by DS was lower than that in vertical direction 

as tested by BST, when the normal stress was lower than about 80 kPa (the cross-over 

normal stress) (Figure 4.11). The situation was reversed when normal stress was larger than 

the cross-over normal stress. These observations were the indications of strength anisotropy 

of the shales. However, it should be noted that the magnitude of the normal stress with 

respect to the horizontal and vertical directions will be different even for the same location in 

the ground when the strength anisotropy is considered, because the normal stress in the 

horizontal direction (or the lateral stress) is generally a function of K0 (coefficient of earth 

pressure at rest) and OCR (overconsoliation ratio) of soil. Therefore, the strength of the soil 

is complicated by the anisotropic behavior. 

Shear strength anisotropy can be inherent due to depositional directional differences 

(Mitchell 1993), or the presence of discontinuities such as joints and fissures which may 

exhibit some degree of preferred orientation. Shear strength anisotropy can also be the result 

of an anisotropic stress state, i.e. the change in orientation of the principal stress (Hansen and 

Gibson 1949), thus causing the induced anisotropy (Chowdhury 1978). Generally, it is not 

easy to separate the two types of strength anisotropy. 
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PRELIMINARY EVALUATION OF THE SHALES AND SLOPE STABILITY 

A preliminary engineering evaluation of the characteristics of shales can be carried 

out following the descriptions by Underwood (1967), based on the physical properties of the 

shales. Montmorillonite has been recognized as the most unfavorable clay minerals in soils. 

Since montmorillonite was found in the H.W.Sh, this soil was potentially problematic, which 

agreed with the general knowledge. Other unfavorable conditions for shales include cohesive 

strength of 30 to 700 kPa and friction angle of 10 to 20 degrees (Underwood 1967). The test 

results (Tables 4.1, 4.2 and 4.3) suggested that the H.W.Sh belongs to these categories. In 

general, the H.W.Sh in the site has unfavorable engineering properties. 

The stability of the slopes can be evaluated based on the measured shear strength 

parameter values. The BST measurements gave relatively lower shear strength values than 

the DS and CU measurements at the estimated stress level of 100 to 200 kPa for the project 

(Figure 4.11), thus should be relatively conservative and safe when used for stability analysis. 

Slope stability analyses based on the measured shear strength values have shown small 

probability of failure (Farouz et al. 2005; Yang et al. 2005). Therefore, use of the realistic 

shear strength values that is specific to the site is expected to be cost effective and safe for 

the project. The use of in situ testing was a cost-effective way of optimizing slope design. 

Roughly, for every $1 spent on in situ testing, the estimated construction cost savings are 

between $30 and $50 (Farouz et al. 2005). For the H.W.Sh having an apparently very low 

shear strength as revealed by the field investigation, excavation has also been proposed as a 

part of the remediation measures. 

SUMMARY AND CONCLUSIONS 

The site for the Sugar Creek embankment slope project was characterized, and 

engineering properties for soils, mainly the shear strength for the shales, were investigated. 

Both the stratification and shear strength values of the soil were highly variable. The 

classification of weathering of the shales that was specific to the site was proposed as an aid 

in characterizing the slope instability. It was found that the classification of weathering could 
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not be purely relied on the index properties of the shales, but it was consistently correlated 

with shear strength values of the shales. The shear strength values obtained from different 

methods did not exactly match, but were comparable and showed reasonable agreement, 

considering the variable nature of the soil. The internal friction angles obtained from BST 

were generally lower than those obtained from direct shear tests, while the cohesion 

intercepts obtained from BST were generally larger than those from direct shear tests, for 

both the alluvium and the highly weathered shale. This observation could be mainly 

attributed to soil variability, test methods and shear strength anisotropy. The use of the 

weathering classification and the measured shear strength values are expected to be 

economical and safe for the slope design and ground improvement measures. 
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Figure 4. 5 Borehole Shear Test results 

(a) Examples of BST results; (b) BST results for all the highly weathered shales; (c) BST 

shear strength parameter values for all the shales. 



www.manaraa.com

0 1 2 3 4 5 6 7 8  

Horizontal displacement (mm) 

(a) 

• Peak strength (*'=21.0°, c'=17.8 kPa) 

• Fully softened strength (*'=19.7°, c'= 0 kPa) 
(at 7mm displacement) 

y = 0.3835X + 17.844 

R2 = 0.9911 
y = 0.3573x 
R2 = 0.9261 

CH1003, 5.60-5.90 m 
Highly weathered shale 

Effective normal stress (kPa) 

(b) 



www.manaraa.com

73 

200 

150 
nT 
CL 
a 
I 100 
to 

8 
w 50 

0 
0 50 100 150 200 250 300 350 400 

Normal stress (kPa) 

(c) 

Figure 4. 6 Direct shear test results for the highly weathered shale 

(a) Typical curves of shear stress versus displacement; (b) Strength envelopes; (c) 

Results of direct shear tests for all the highly weathered shales. 
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Figure 4. 7 Results of triaxial compression tests for the highly weathered shale 

(a) Effective stress paths in consolidated drained test (CD); (b) Effective and total stress 

paths in consolidated undrained test (CU); (c) p'-q plot for all the CU tests. 
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Figure 4. 8 Unconfined compression test results for the slightly weathered shales 
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Figure 4. 9 Ring shear test results for the highly and moderately weathered shales 

(a) Shear stress versus displacement; (b) Failure envelope; (c) residual friction angle versus 

PI for all the weathered shale samples. 
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Figure 4. 11 Comparison of the average shear strength envelopes of different test methods 

Table 4. 1 Statistics of Borehole Shear Test (BST) Results 

Soil Total 

No. of 

Test 

<t»'(deg.) c (kPa) Total 

No. of 

Test 
Max. Min. Ave. S.D. Max. Min. Ave. S.D. 

Alluvium 5 21 12 16.5 3.4 64 9 33.0 20.3 

Highly weathered shale 10 23 7 12.8 4.9 66 10 312 19.9 

Moderately weathered shale 5 38 13 21.6 9.6 334 6 97 134 

Slightly weathered shale 9 41 9 213 11.3 3970 55 675 1254 

Max. = maximum value Ave. = Average value 

Min. = Minimum value S.D. = Standard deviation 
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Table 4. 2 Statistics of Direct Shear Test (DS) Results 

Soil 

Total 

No. of 

Test 

Friction angle, <(> (deg.) Cohesion, c (kPa) 

Soil 

Total 

No. of 

Test 
Max. Min. Ave. S.D. Max Min. Ave. S.D. 

Alluvium 4 31 23 26.5 3.8 27 14 18.8 5.8 
Highly weathered shale 10 28 12 21.4 4.8 38 0 20.4 10.4 

Moderately weathered shale 6 29 14 19.4 5.7 43 5 216 15.6 

Max. = maximum value Ave. = Average value 

Min. = Minimum value S.D. = Standard deviation 

Table 4. 3 Statistics of Consolidated Undrained Triaxial Test (CU) Results 

Total Friction angle, <|>(deg.) Cohesion, c (kPa) 

Soil No. of 

Test 

Ma 

X. 
Min. Ave. S.D. Max. Min. Ave. S.D. 

Alluvium 2 30 20 25.0 7.1 13 0 6.5 9.2 

Highly weathered shale 4 34 21 26.6 5.5 10 1 5.7 3.8 

Max. = maximum value Ave. = Average value 

Min. = Minimum value S.D. = Standard deviation 
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CHAPTER 5. PROBABILISTIC ANALYSIS OF A CLAY SHALE EMBANKMENT 
SLOPE USING IN SITU AND LABORATORY STRENGTH 
PARAMETER VALUES 

A paper submitted to Geotechnical and Geological Engineering 

Hong Yang1, David J. White2, and Vernon R. Schaefer3 

ABSTRACT 

Probabilistic slope stability analyses were performed on the Sugar Creek embankment 

slope project in Iowa. Shear strength parameter values from two independent sources of in-

situ Borehole Shear Test (BST) and laboratory direct shear test (DST) were used in the 

analyses assuming normal distributions. Both circular and non-circular slip surfaces 

following the Morgenstern-Price method and the Bishop simplified method were used for 

comparisons. The results show that the location of the critical slip surface using the BST 

shear strength parameter values is different from that using the DST values. The calculated 

factors of safety against slope instability are slightly smaller and the probability of failure is 

higher, when using the BST values compared to the DST values. The difference in results is 

due to BST measurements providing a lower mean value but larger variability than the DST 

measurements. With respect to the assumed slip surfaces, the non-circular critical slip 

surfaces gave lower factors of safety, but the circular "critical" slip surfaces gave higher 

probability of failure, indicating inconsistency in the location of the "critical" slip surface 

resulted from the variability in the input parameters. The use of the two independent sources 

of shear strength parameter values provided a comparison and check for the evaluation of the 

slope stability and probability of failure. The paper represents the first detailed analyses and 

application of in-situ BST results in a probabilistic slope stability analysis. 

Keywords: Probability; Reliability; Slope stability; Borehole Shear Test; Strength parameter; 

Slip surface. 
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INTRODUCTION 

Slope stability assessment is generally a difficult geotechnical problem because of the 

uncertainties involved. In fact, slope engineering is perhaps the geotechnical subject that is 

most dominated by uncertainties (El-Ramly et al. 2002). The sources of uncertainty involved 

in slopes include spatial uncertainties (such as site stratigraphy and variability) and data 

uncertainties (such as soil engineering properties) (Abramson at al. 2002), and "the 

uncertainty in the values of the soil properties is a major, in most cases the major, contributor 

to the uncertainty in the stability of slopes and embankments" (Christian et al. 1992). 

Conventional approaches of deterministic slope stability analysis do not account for 

quantifying the uncertainties in an explicit manner. Conventional approaches rely on the use 

of the factor of safety as defined by the ratio of the strength available over the strength 

mobilized to maintain equilibrium. Due to the recognition of the uncertainties involved in 

determining the available strength of the soil, the selection of a suitable value of factor of 

safety, which is used to offset the risk raised from the uncertainties, has been based on 

engineering judgment and local experience; and conservative parameters and designs are 

often used to manage the uncertain conditions. The impact of such subjective conservatism 

cannot be evaluated, and past experience indicates that apparently conservative designs do 

not always warrant safety against failure. Furthermore, the use of a single value of factor of 

safety can be misleading, as it is known that the slope calculated to have the same value of 

factor of safety may indeed pose different risk levels, depending on the degree of variability 

of the shear strength parameters. 

The evaluation of the role of the uncertainties in soil parameters gave rise to the 

application of the probabilistic concepts and methods. Using probabilistic analyses, 

uncertainties can be quantified and included in the design process in a rational manner, and 

the probability of failure and the reliability index of the design can be assessed accordingly. 

Since 1970, when probabilistic slope stability analysis was first introduced into slope 

engineering (e.g., Alonso 1976; Tang et al. 1976), probabilistic concepts and principles have 

been well established in the literature. Some representative publications include Li and Lump 

(1987), Christian et al. (1994) and Hassan and Wolff (1999), among others. However, it 

appears that most of the probabilistic slope analyses in the literature utilize a single source of 
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shear strength parameters, i.e. the strength parameters are obtained from either in-situ tests or 

laboratory tests. For the in-situ tests, BST is the only method that provides direct 

measurements of the shear strength parameter values, i.e., the internal friction angle (<j)') and 

cohesion intercept (c') (Handy 1986). Furthermore, most published studies consider only one 

of the few available deterministic models and commonly consider only circular slip surfaces 

(Hassan and Wolff 2000). 

In view of the aforementioned inadequacy in probabilistic slope stability analysis in 

the literature, this study investigates the use of in-situ BST shear strength parameter values 

and laboratory direct shear test (DST) strength parameter values, the deterministic methods, 

and the locations of the critical slip surface, on the probability of failure and reliability index 

of the slope. The study was based on a recently proposed embankment slope project in Iowa, 

which involved multiple soil layers with a weak layer of highly weathered shale. For 

comparison to the in-situ BSTs, laboratory DSTs were performed on essentially the same 

soils for the project site. Thus, two independent sets of shear strength parameter values from 

different sources were obtained, and their statistical results assuming normal distribution 

were used for the probabilistic slope stability analyses. Two deterministic slope stability 

methods, i.e. the Bishop (1955) simplified method and the Morgenstern-Price (1965) method, 

were used; and both circular and non-circular slip surfaces were considered. The Monte 

Carlo approach (Tobutt 1982) was used for the probabilistic procedures, and the 

computations were executed using the computer program Slope/W (GEO-SLOPE 2004). 

Though Bishop simplified method was developed based on a circular slip surface, the method 

was implemented for non-circular slip surface in the Slope/W program. Different analyses 

were performed on the same slope section, and their results are discussed and compared. 

THEORY OF PROBABILISTIC SLOPE ANALYSIS 

Probabilistic slope stability analysis quantifies the probability of failure of a slope. 

The input parameters in a probabilistic analysis are the mean values of the parameters (such 

as <t>', c' and unit weight of the soil); and the variability of these parameters are represented by 

the standard derivations. The analysis results include the probability of failure and the 

reliability index. 
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Probability Density Function 

Since soils are naturally formed materials, and their physical properties vary from 

point to point. The variability of soil properties is a major source of the uncertainty. 

Laboratory results on natural soils indicate that most soil properties can be considered as 

random variables conforming to the normal distribution function (Lumb 1966; Tan et al. 

1993; and Baecher and Christian 2003), which is written as: 

where f(x) = relative frequency; a = standard deviation; and (i = mean value. Eq. (1) is also 

known as the probability density function (PDF) for normal distribution. This distribution is 

symmetric about the mean. Theoretically, the normal curve will never touch the x axis, since 

the relative frequency, f(x), will be non-zero over the entire range. This is a limitation of the 

model since the input parameters have finite values. However, for practical purposes, the 

relative frequency can be neglected after ±5CT away from the mean value (GEO-SLOPE 

2004). 

Statistical Analysis of Factor of Safety 

The component input parameters in a slope stability analysis are modeled as random 

variables, and used to estimate the PDF of factor of safety (FS). This PDF is characterized by 

its mean value and standard deviation. It is usually assumed that the PDF of FSs to be either 

normally or lognormally distributed. Statistical analysis can be conducted to determine the 

mean, standard deviation, the PDF and the probability distribution function of the slope 

stability problem. The equations used in the statistical analysis for the normal distribution 

case are summarized as follows (Lapin 1983): 

(1) 

Mean factor of safety, |r 
n£o 

1 ^ 
(2) 

Standard deviation, a: (3) 



www.manaraa.com

83 

Probability density function: f(F) = -

Probability distribution function: 

f(F) = p[x<F]= £ 

rV2^ 
exp 

rV^r 
exp 

1  ( F - ^ 2  

2 { a ) 

1  (  x - j u ^  
•dx 

(4) 

(5) 

where F t  = the trial factor of safety; n = number of trial factors of safety; and F = factor of 

safety. 

Probability of Failure and Reliability Index 

Two indices - probability of failure (PF) and reliability index (RI) - are available to 

quantify the stability or the risk level of a slope with the probabilistic slope analysis 

(Christian et al. 1994). The probability of failure is the probability of obtaining a FS less 

than 1.0. It is computed by integrating the area under the PDF for FSs less than 1.0. The PF 

can be interpreted in two ways: (1) if a slope were to be constructed many times, what 

percentage of such slopes would fail; or (2) the level of confidence that can be placed in a 

design (Mostyn and Li 1993). Nevertheless, the PF is a good index showing the actual level 

of stability of a slope. 

The RI may provide a more meaningful measure of stability than the FS. The RI 

provides a measure of how much confidence one can have in the computed value of FS and 

leads to an estimate of the PF. The RI (|3) is defined in terms of the mean (p.) and the standard 

deviation (a) of the trial FS (Christian et al. 1994). For a normal distribution of PDS of FS, 

P is given by: 

P = - (6) 

The RI describes the stability of a slope by the number of standard deviations 

separating the mean FS from its defined failure value of 1.0. It can also be considered as a 

way of normalizing the FS with respect to its uncertainty. When the shape of the probability 

distribution is known, the RI can be related directly to the PF. 
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Probabilistic Slope Analysis Procedures 

Probabilistic procedures for slope stability analysis can vary in assumptions, 

limitations, capability to handle complex problems, and mathematical complexity. Most of 

the procedures, however, can be categorized as either the approximate method (such as the 

Taylor series method; the First Order Second Moment method; the point estimate method, 

etc.); or the Monte Carlo simulation (El-Ramly et al. 2002). Approximate methods make 

simplifying assumptions that often limit their application to specific classes of problems. 

They allow the estimation of the mean but do not provide any information about the shape of 

the PDF ofFS. 

Monte Carlo simulation in slope analysis requires extensive computational efforts to 

solve slope stability problems, but the rapid developments in software provide increased use 

of this method. The computational procedures are described by Tobutt (1982), Hammond et 

al. (1992) and Chandler (1996) among others. The method involves (1) the selection of a 

deterministic solution procedure; (2) decisions regarding which input parameters are to be 

modeled probabilistically and the representation of their variability in terms of a normal 

distribution model using the mean value and standard deviation; (3) the estimation of new 

input parameters and the determination of new FSs many times; (4) the determination of 

some statistics of the computed FS, the probability density and the probability distribution of 

the problem (GEO-SLOPE 2004). 

In the Slope/W program (GEO-SLOPE 2004), the critical slip surface is first 

determined based on the mean value of the input parameters using any of the limit 

equilibrium methods. Probabilistic analysis is then performed on the critical slip surface, 

taking into consideration the variability of the input parameters. During each Monte Carlo 

trial, the input parameters are updated based on a normalized random number. FSs are then 

computed based on these updated input parameters. By assuming that the FSs are also 

normally distributed, the mean and the standard deviations of the FSs are determined. The 

PDF is then obtained from the normal curve. 

The number of Monte Carlo trials in an analysis is dependent on the number of 

variable input parameters and the expected PF. The number of required trials increases as the 

number of variable inputs increases or the expected PF becomes smaller. It is not unusual to 
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calculate thousands of trials to achieve an acceptable level of confidence in a Monte Carlo 

probabilistic slope stability analysis (Mostyn and Li 1993). According to Harr (1987), to 

achieve results not differing by more than 1% from the estimated value with 99% confidence, 

the Monte Carlo procedure requires more than 16,000 trials. Giasi et al. (2003) performed 

Monte Carlo simulation by increasing the Monte Carlo trials from 10 to 20,000 and showed 

that Monte Carlo solution became stable after the number of trials was larger than 10,000. 

Thus, it has been assumed that 20,000 Monte Carlo trials for each simulation would be 

sufficient in this study. 

CASE STUDY OF PROBABILISTIC SLOPE ANALYSIS 

Project Background and Geological Conditions 

Approach embankment fills with pile-supported abutments were designed prior to this 

study to support the proposed new bridge of Highway US 63 over Sugar Creek in Wapello 

County, Iowa, USA. Preliminary slope analyses indicated potential global instability for the 

slopes in front of the abutments, with a slip surface passing through the highly weathered 

shale, when using a cohesion of 10 kPa assumed by the design engineers. This approach 

resulted in high cost implications for the proposed ground improvement measures. To 

achieve an economical design, a comprehensive subsurface exploration and testing program 

was executed in 2004 at a small cost to supplement the preliminary investigation. The 

program comprised extensive in-situ Borehole Shear Tests (BST), laboratory direct shear 

tests (DST) on undisturbed samples, as well as other tests. Based on the actual shear strength 

of the soils obtained, the stabilities of the slopes were re-evaluated and substantial savings 

from the proposed ground improvement measures are expected to be realized. 

The geotechnical investigation showed that the subsurface of the project site can be 

generally grouped into four layers. The first layer mainly consists of Alluvium soils of silt 

and clay or their mixtures with small amounts of sand and gravel. It is underlain by three 

layers of highly weathered shale (H.W.Sh), moderately weathered shale (M.W.Sh) and 

slightly weathered shale (S.W.Sh) in order of increasing depth. The three layers of shale were 

distinguished based on the results of field visual examination and the variation of the soil 
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strength tested in the field and laboratory. In general, H.W.Sh had a relatively low strength, 

S.W.Sh had a relatively high strength; and M.W.Sh represented the transition between 

H.W.Sh and S.W.Sh. The boring results indicated that the spatial distributions of the soil 

layers were highly variable. Ground water table gently dipped towards and connected with 

the creek. A typical slope section showing the soil profile is presented in Figure 5.1. 

Basic properties for representative soil samples were investigated with emphasis on 

the shales. The results show that clay fraction for the H.W.Sh and M.W.Sh ranged from 30 to 

65%, liquid limit varied between 35 and 75%, and plastic limit varied from 15 to 45%. All 

the shales were classified as either low plasticity clay (CL) or high plasticity clay (CH) 

according to Unified Soil Classification System (ASTM 2002a). The complete details of the 

geotechnical investigation results have been reported by Schaefer et al. (2005). 

In-Situ Borehole Shear Test Results 

The fundamental consideration for the Borehole Shear Test (BST) is to perform a 

series of direct shear tests on the inside of a borehole (Handy 1986), and provide direct 

measurements of shear strength parameter values, which is unique among various in-situ 

testing methods. The BST device is shown in Figure 5.2. Basically, tests are conducted by 

expanding diametrically opposed contact shear plates into a borehole under a constant known 

normal stress, then allowing the soil to consolidate, and finally by pulling vertically and 

measuring the shear stress in-situ separately and concurrently (Handy 1986). The maximum 

shear resistances are measured at successively higher increments of applied normal stress. 

The shear strength parameter values of the soil are then obtained from the Mohr-Coulomb 

failure envelope by plotting the shear stresses versus the normal stresses. Complete 

descriptions of the test procedures for the BST can be found in the literature (e.g. Lutenegger 

1987). The BST is normally representative of a consolidated-drained test, which has been 

demonstrated by pore pressure measurements during the test (e.g. Demartinecourt and Bauer 

1983). The rate of the shear head displacement is generally 0.05 mm/s (Wineland 1975). The 

BST has also been proved simple to operate. Lutenegger and Timian (1987) investigated the 

reproducibility of BST results in soft and medium consistency marine clays. They found that 

there was no difference in the test results between an experienced operator and an 
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inexperienced operator; and test results obtained by ten inexperienced operators generally fell 

within 95% confidence limits. 

In this project, a total of 29 BSTs were performed in different soil layers in different 

boreholes, with emphasis on the H.W.Sh. All the results show that the tests were well 

performed, as revealed by the large values of coefficient of correlation (R2) between the 

shear stresses and the normal stresses, which were generally larger than 0.99. The plots of 

shear stress versus normal stress of BST for all the H.W.Sh are shown in Figure 5.3. The 

results indicate a significant variation of the shear strength parameter values of the soil. 

Mohr-Coulomb failure envelopes were provided by using a constant friction angle and 

varying the cohesion intercept (c'). The value of c' was assumed to be zero when it was 

negative after fitting with normal distribution. 

The histograms of the shear strength parameter values are presented in Figure 5.4, 

together with the fit curves showing the normality of the results. A relatively large difference 

between the measured and the fit curve of the cumulative distributions can be noted for the 

friction angles, while such difference is relatively small for the cohesion. The difference 

between the measured and fit values can be attributed to the small number of test data, i.e. ten 

data points in this case. This inadequacy can only be overcome by obtaining sufficiently 

large amount of data points, though there is always a limitation on the available amount of 

data in engineering practice. Nevertheless, the general agreement of the trend of the 

cumulative distribution between the measured and fit curves is still a good indication on the 

validity of the normality. These normal distributions are used as input parameters for the 

probabilistic slope analyses, which are summarized in Table 5.1 based on the statistics of the 

test results. From Table 5.1, it can be seen that the general trend that the shear strength values 

increase with the increase in depth is apparent, despite the variation of the shear strength 

parameters values. H.W.Sh generally has low shear strength values; and S.W.Sh generally 

have high shear strength values, mainly exhibited by the much higher cohesions. M.W.Sh 

have shear strength values between H.W.Sh and S.W.Sh indicating a transition layer. 
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Laboratory Direct Shear Test Results 

The direct shear test (DST) has become a routine method to obtain soil strength 

parameters due to its simplicity. The DST strength parameters can be different from those 

obtained from more elaborate tests such as triaxial compression, but the difference is 

normally small (Lambe and Whitman 1979). In fact, DST and triaxial compression tests 

should give essentially same results for the same soil. This was affirmed by Lambe and 

Whitman (1979), who reported that comparisons between the value of <j)', from triaxial and 

direct shear tests, after averaging out experimental errors in the determination of the values, 

yield results that differ generally by no more than two degrees. Therefore, DST strength 

parameters were also used for the slope analyses in the study as a comparison to the BST 

strength parameters. The DST was performed on undisturbed Shelby tube soil samples 

following the procedures of ASTM D3080 (ASTM 2002b). Each test was performed on three 

to five specimens. The size of the specimens was typically 63.5 mm in diameter and 20.1 mm 

in height. The loading rate of the shear force was normally 0.025 mm/min. 

A total of 20 consolidated drained DSTs were performed which included four tests on 

the alluvium soils, ten tests on H.W.Sh, and six tests on the M.W.Sh. No DST was performed 

on S.W.Sh as the soil was too stiff to obtain undisturbed Shelby tube samples. The test 

results show that R2 values are generally larger than 0.99 indicating the effectiveness of the 

tests, though R2 values as low as 0.91 were also observed for a few tests, which are attributed 

to inherent soil sample variability. The DST results for all the H.W.Sh are presented in 

Figure 5.5, which show the variation of the soil shear strength measurements and Mohr-

Coulomb failure envelopes assuming a constant friction angle. Histogram plots of the shear 

strength parameter values for the H.W.Sh and the fit cumulative normal distribution curves 

are shown in Figure 5.6. Similar to those for the BST measurements, differences are 

observed between the measured and the fit cumulative distribution curves. However, the 

general agreements on the trends of the curves are apparent and indicate the validity of the 

normality of the test results. The variability of the shear strengths of the soils are also 

illustrated by the statistical results summarized in Table 5.2. 

It can be seen that the numbers of BST and DST are similar for the Alluvium, 

H.W.Sh and M.W.Sh (Tables 5.1 and 5.2). This provides the basis to compare the statistical 
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results of the two different types of tests and the associated slope stability analysis results. 

The statistical results show that the strength parameter values from the two types of tests are 

quite different. This difference can be attributed to differences in test methods and inherent 

soil variability. The BST shears a single soil sample vertically, while DST shears multiple 

samples horizontally and averages three or more soil samples. 

Slope Stability Analysis Results and Discussions 

Input Parameters for the Analyses 

The two sets of the strength parameters, i.e. those from the BST (Table 5.1) and those 

from the DST (Table 5.2), were used for the slope stability analyses separately. Since no 

DST strength parameters were available for the layer of S.W.Sh, they were assumed to be the 

same as the BST strength parameters for the layer. This assumption was reasonable as the 

strength of the S.W.Sh was much higher than the overlying soils; and the S.W.Sh essentially 

had no effect on the slope stability analysis, which is supported by the fact that the critical 

slip surface does not pass through the layer as shown in the following analyses. For the 

compacted fill of the embankment soil, the mean values of strength parameters of <)>' of 12° 

and c' of 29 kPa, as recommended by Iowa Department of Transportation (IaDOT), were 

adopted for all analyses. The standard deviations were assumed to be 0.4° for (j)' and 2.0 kPa 

for c', which were considered reasonable, since the quality of the compaction can be 

relatively well controlled during construction. In addition, the soil unit weight were 20.4, 

19.0, 20.0, 20.0 and 21.0 kN/m3 for the five soil layers with increasing depth, which were 

either recommended by IaDOT for the compacted fill or measured for the Alluvium and the 

three shale layers. The standard deviation of unit weight was assumed to be 0.3 kN/m3 for all 

five layers. For the water table in the slope, the highest water table level was assumed to be 

the maximum water level in the creek according to the estimated 500 years flood event; the 

lowest water table level was assumed to be the ground water table as measured during the 

field investigation; and the average water level was assumed to be the mean water level 

(Figure 5.1). The difference between the highest and the lowest water level was about 3.2 m. 

Circular and Non-circular Slip Surface 
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Two types of slip surfaces, namely circular and non-circular slip surface, were 

considered in the slope stability analyses in the study. In the S lope/W program (GEO-SLOPE 

2004), the circular slip surface is generated by assigning a series of trial centers of circles and 

radiuses, and the factor of safety (FS) is computed on each of the trial circular slip surfaces to 

search for the critical slip surface which has the lowest FS. For the non-circular slip surface, 

the "auto-locate slip surface" method that is built-in in S lope/W was adopted. A range of trial 

slip surfaces is analyzed over the problem extents, and the slip surface shape is optimized 

using an efficient statistical random walk procedure to obtain the lowest FS. 

The locations of both the circular and non-circular critical slip surfaces are dependent 

on the soil strength parameter values, as can be seen in Figure 5.7. The figure indicates that 

the critical slip surfaces corresponding to BST strength parameters (BST slip surfaces) pass 

through the bottom of the H.W.Sh, while the DST slip surfaces pass through the bottom of 

M.W.Sh. DST slip surfaces were deeper than the BST slip surfaces. This is because the 

difference of the BST strength parameter values between H.W.Sh and M.W.Sh is significant 

(Table 5.1); while the difference of DST strength parameter values between the H.W.Sh and 

M.W.Sh are relatively small (Table 5.2). 

Deterministic Slope Stability Analyses 

Deterministic slope stability analyses were first performed to obtain the lowest FS (or 

the deterministic FS). The analysis was performed based on the mean values for all the soil 

properties and the mean ground water table level. Eight analyses in total were performed 

considering two sets of strength parameter values, two types of slip surfaces (Figure 5.7) and 

two analysis methods; and the results are presented in Table 5.3 (under the column D.FS). 

A few observations can be made from the results. Firstly, FS values range from 1.521 

to 1.587 when using BST strength parameters; and the FS values range from 1.599 to 1.624 

when using DST strength parameters. These results demonstrate the influence of the lower 

mean values for the BST strength parameters compared to the mean values for the DST 

strength parameters, which resulted in lower FS values. Secondly, FS values for non-circular 

slip surface are consistently lower than FS values for circular slip surface, for the cases of 

using both BST and DST strength parameters. This suggests that the non-circular slip surface 
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is more critical than the circular slip surface for the slope involving layered soils. Thirdly, the 

difference of FS values are small when comparing the MP method and the Bishop method for 

the circular slip surface (i.e., 1.576 and 1.587 when using BST parameters; 1.620 and 1.624 

when using DST strength parameters), but the difference of FS values are relatively large 

between the MP method and the Bishop method for non-circular slip surface (i.e., 1.540 and 

1.521 when using BST parameters; 1.599 and 1.610 when using DST strength parameters). 

This could be due to the fact that the MP method satisfies all conditions of equilibrium; while 

the Bishop method satisfies vertical equilibrium and overall moment equilibrium only, it 

does not satisfy horizontal equilibrium. The Bishop method is normally recommended for 

circular slip surface (Abramson et al. 2002). Therefore, for the non-circular slip surface, MP 

method should be more accurate. Nevertheless, the results from the Bishop method still 

provide a comparison. 

Probabilistic Slope Stability Analyses 

A total of eight probabilistic slope stability analyses were performed corresponding to 

the deterministic slope stability analyses. All the soil properties and ground water levels were 

assumed to be of normal distributions; and the standard deviations as shown in Tables 5.1 

and 5.2 were used. The probability density functions (PDFs) of FS from the analyses are 

presented in Figure 5.8, and the cumulative distribution functions of FS are presented in 

Figure 5.9. The results are also summarized in Table 5.3 (under the column Probabilistic 

Analysis I). 

A few observations can be made from the results of the analyses. Firstly, use of the 

BST strength parameters generally resulted in lower mean FS values than the use of the DST 

strength parameters, as indicated by the FS values at the peaks of PDF curves (Figure 5.8) 

and mean FS values in Table 5.3 (shown as M.FS, which are 1.524 to 1.601 versus 1.615 to 

1.660). These FS values are consistent with the deterministic FS values, as the mean FS 

values are mainly dependent on the mean values of the input parameters. The discrepancy of 

corresponding FS values was attributed to the analysis procedures involving Monte Carlo 

simulations. Secondly, the use of BST strength parameters generally gave smaller reliability 

indexes than the use of DST strength parameters (Table 5.3, i.e. 1.422 to 1.733 versus 2.163 
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to 2.479), which are also indicated by the flatter PDF curves (Figure 5.8). The flatter PDF 

curves are due to the larger standard deviations of FS, which resulted in smaller reliability 

index values (see Equation 6). These results reflect the fact that the overall variability of BST 

strength parameters are larger than those of DST strength parameters. Thirdly, corresponding 

to the smaller reliability index values, the use of the BST strength parameters generally 

resulted in higher probability of failure (PF) (Table 5.3, i.e. 3.68 to 7.78% versus 0.40 to 

1.45%), which are also indicated by the magnitude of cumulative probability having FS 

values of 1.0 (Figure 5.9). 

The probabilistic analysis results also show the effect of the slip surface and the 

analysis method. For the same slip surface, either circular or non-circular, PF obtained by the 

Bishop method (Analyses 2, 4, 6 and 8, Table 5.3) is always larger than those obtained by the 

MP method (Analyses 1,3,5 and 7). However, the PF values for the circular slip surface are 

relatively close when using the MP method and the Bishop method (e.g.., Analyses 1 and 2; 

Analyses 5 and 6); the PF values for the non-circular slip surface are relatively different 

when using the MP method and Bishop method (e.g., Analyses 3 and 4; Analyses 7 and 8). 

The difference of PF values on the non-circular slip surface between the use of MP method 

and the Bishop method, especially that for Analyses 3 and 4, could be again due to the 

limitation of the Bishop method. Consequently, the results for the non-circular slip surface 

obtained from the MP method are considered to be more accurate. 

Probabilistic Slope Stability Analyses with Emphasis on H.W.Sh 

In order to estimate the contribution of the variability of the strength parameters of 

the H.W.Sh to the RI, another set of probabilistic analyses was performed by considering the 

variation of the H.W.Sh only. Parameters for the remaining soil layers and ground water 

table level were set to fixed values (the mean values). The results of the analyses are 

summarized in Table 5.3 (under columns of Probabilistic Analysis II). It can be see that the 

results using BST strength parameters (Analyses 1 to 4) are quite different from those using 

DST strength parameters (Analyses 5 to 8) with respect to the RI values. For the cases of 

using BST strength parameters, the RI values increase slightly as compared with the 

corresponding RI values in Probability Analyses I. For example, RI for the Analysis 1 
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increased from 1.733 to 1.985. On the other hand, when using DST strength parameters, the 

RI values increased significantly. For example, RI for the Analysis 5 increased from 2.280 to 

11.711. These observations indicate that H.W.Sh played a dominant role when BST strength 

parameters were used. The role became less important when DST strength parameters were 

used. This further illustrates the importance of the proper selection of strength parameter 

values. 

Critical Situations in Slope Stability Analyses 

In slope analysis, the lowest factor of safety (FS) and the highest probability of failure 

(PF) are the critical situations. However, it is noteworthy that the critical slip surface (i.e., the 

slip surface having the lowest deterministic FS value) does not necessarily correspond to the 

highest PF value. This is the case for Analyses 1 and 3, and Analyses 5 and 7, for which the 

same analysis method of MP method were use, thus allowing for comparison (Table 5.3). 

The non-circular slip surface has a lower FS value indicating that it is more critical than the 

circular clip surface. On the other hand, the non-circular slip surface has a lower PF value 

indicating that it is less important than the circular slip surface. The inconsistency is due to 

the effects of the uncertainties or variations in the input parameters on the PF. It shows FS 

was not a sufficient indicator of safety margin. Similar observations were also reported by 

other authors (e.g., Hassan and Wolff 1999). El-Ramly (2002) hence noted that an essential 

part of the probabilistic analysis is to consider all the possibly hazardous slip surfaces which 

include the deterministic critical slip surface, the minimum reliability index slip surface (or 

the maximum PF slip surface) and surface through weak layers. Bhattacharya et al. (2003) 

proposed a numerical procedure for locating the slip surface of minimum reliability index for 

slope, but the algorithm has not been implemented in S lope/W (GEO-SLOPE 2004). 

Nevertheless, it has been generally accepted that the probability estimated from the most 

critical slip surface is a reasonable estimate of slope reliability (Alonso 1976; El-Ramly 

2002). 
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SUMMARY AND CONCLUSIONS 

Probabilistic slope stability analyses were performed on the proposed Sugar Creek 

embankment slope project in Iowa. Shear strength parameter values from two independent 

sources of in-situ Borehole Shear Test (BST) and laboratory direct shear test (DST) were 

used in the analyses assuming normal distributions. Both circular and non-circular slip 

surfaces were considered, and the Morgenstem-Price method and the Bishop simplified 

method were used for comparisons. 

The following conclusions can be drawn from the analyses: 

(1) The locations of the critical slip surfaces using the BST shear strength 

parameter values are different from those using the DST values due the difference in the two 

sets of the shear strength parameter values. 

(2) The calculated factors of safety against slope instability are slightly smaller 

and the probability of failure is higher when using the BST values compared to the DST 

values. The difference in results is due to the fact that BST measurements have lower mean 

values but more variability than the DST measurements. The higher variation in BST 

measurements may be a result of testing on the same soil, while DST averages three or more 

soil samples. 

(3) The highly weathered shale contributes much more to the overall probability 

of failure when using the BST measurements compared to the DST measurements. 

(4) With respect to the assumed slip surfaces, the non-circular critical slip 

surfaces gave lower factors of safety, but the circular "critical" slip surfaces gave higher 

probability of failure, indicating the inconsistency on the locations of the "critical" slip 

surfaces resulted from the uncertainties of the input parameters. 

(5) Morgenstern-Price method and Bishop simplified method gave very close 

results on circular slip surface, but gave considerably different results on non-circular slip 

surface, especially with respect to the probability of failure. This may be due to the 

limitations of Bishop simplified method on non-circular slip surface. 

(6) The use of the two independent sources of shear strength parameter values 

provided comparison and check for the evaluation of the slope stability and probability of 

failure. 
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(7) This paper demonstrates the first detailed application of BST in probabilistic 

slope stability analyses. 
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Figure 5. 1 Cross-section of a typical slope 
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Figure 5. 2 The Borehole Shear Test (BST) device, 

(a) Pressure console; (b) Pressure plate; 

(c) Ordinary pressure shear plates; (d) High pressure shear plates. 
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Figure 5. 4 Histograms and fitting curves of normal distribution for the shear strength 
parameter values obtained from the borehole shear tests (BSTs) for the highly weathered 

shales, (a) Friction angle; (b) Cohesion. 
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Figure 5. 5 Plot of normal stress versus shear stress in all the direct shear tests (DSTs) for the 
highly weathered shales 
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Figure 5. 6 Histograms and fitting curves of normal distribution for the shear strength 
parameter values obtained from direct shear tests (DSTs) for the highly weathered shales, (a) 
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shear strength parameter values obtained from BST and DST 
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Figure 5. 8 Probability density functions of factor of safety. 

(a) PDF of FS for all the analyses; (b) PDF of FS for analyses using BST measurements; 

(c) PDF of FS for analyses using DST measurements. 



www.manaraa.com

104 

100 

80 

S O 
Q) 

I 3 
E 
3 
O 

60 

40 

20 BST'y///DST 

BST-Cir-MP 
-- - BST-Cir-Bl 
— BST-Non-MP 

BST-Non-BI 
DST-Cir-MP 

-- - DST-Cir-BI 
DST-Non-MP 
DST-Non-BI 

0.0 0.5 1.0 1.5 2.0 

Factor of safety 
2.5 3.0 3.5 

(a) 

100 

£ 40 BST-Cir-MP 

BST-Cir-Bl 
BST-Non-MP 
BST-Non-BI 

0.0 0.5 1.0 1.5 2.0 

Factor of safety 
2.5 3.0 3.5 

(b) 



www.manaraa.com

105 

100 

£ 40 
î 
| 20 
O 

- DST-Cir-MP 

-- DST-Cir-BI 

- - DST-Non-MP 

- DST-Non-BI 
DST 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
Factor of safety 

(c) 

Figure 5. 9 Cumulative distribution functions of factor of safety 

Table 5. 1 Statistics of Borehole Shear Test Results 

Soil 

Total 

No. of 

Tests 

Friction angle, (j) (deg.) Cohesion, c (kPa) 

Soil 

Total 

No. of 

Tests 
Max. Min. Ave. S.D. Max. Min. Ave. S.D. 

Alluvium 5 21 12 16.5 3.4 64 9 33.0 20.3 

H.W.Sh 10 23 7 12.8 4.9 66 10 33.2 19.9 

M.W.Sh 5 38 13 21.6 9.6 334 6 97 134 

S.W.Sh 9 41 9 23.3 11.3 3970 55 675 1254 

Notations: H.W.Sh - Highly weathered shale; M.W.Sh - Moderately weathered shale; S.W.Sh - Slightly 

weathered shale; Ave. - average value (mean value); S.D. - standard deviation. 
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Table 5. 2 Statistics of Direct Shear Test Results 

Soil 

Total 

No. of 

Tests 

Friction angle, § (deg.) Cohesion, c (kPa) 

Soil 

Total 

No. of 

Tests 
Max. Min. Ave. S.D. Max. Min. Ave. S.D. 

Alluvium 4 31 23 26.5 3.8 27 14 18.8 5.8 

H.W.Sh 10 28 12 21.4 4.8 38 0 20.4 10.4 

M.W.Sh 6 29 14 19.4 5.7 43 5 23.6 15.6 

Notations: same as for Table 5. 1. 

Table 5. 3 Summary of the Results of Slope Stability Analysis 

No. Analysis 

D.FS 

Probabilistic Analysis Ia Probabilistic Analysis IIb 

No. Analysis 

D.FS 

PF 

M.FS RI (%) 

PF 

M.FS RI (%) 

1 BST-Cir-MP 

2 BST-Cir-BI 

1.576 

1.587 

1.582 1.733 3.99 

1.588 1.725 4.18 

1.581 1.985 2.21 

1.587 1.979 2.41 

3 BST-Non-MP 

4 BST-Non-BI 

1.540 

1.521 

1.601 1.714 3.68 

1.524 1.422 7.78 

1.576 1.704 3.62 

1.517 1.469 7.04 

5 DST-Cir-MP 

6 DST-Cir-BI 

1.620 

1.624 

1.629 2.280 1.04 

1.632 2.303 1.12 

1.621 11.711 0.00 

1.629 11.306 0.00 

7 DST-Non-MP 

8 DST-Non-BI 

1.599 

1.610 

1.660 2.479 0.40 

1.615 2.163 1.45 

1.606 12.404 0.00 

1.612 11.402 0.00 

Notations - BST: Borehole shear test; DST: direct shear test; Cir: circular slip surface; Non: non-circular slip 

surface; MP: Morgenstern-Price method; BI: Bishop simplified method; D.FS: deterministic factor of 

safety; M.FS: mean factor of safety; RI: reliability index; PF: probability of failure. 

a. Considering variations of soil properties for all layers and variations of ground water table level. 

b. Considering variations of strength parameters for the highly weathered shale only. Parameters for 

other layers and ground water table level were set to the mean values. 
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CHAPTER 6. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

GENERAL CONCLUSIONS 

The most important conclusions and the significance of the study are listed as follows: 

1. BSTs are competent to characterize slopes, especially to obtain the in-situ soil shear 

strength parameter values that are essential for slope stability analysis. BSTs have the 

advantages in that they gave direct, in-situ measurement of soil shear strength in a 

relatively quick manner. 

2. The BST measured the peak shear strength and partially softened shear strength, while 

the ring shear test measured the residual shear strength of the stiff clay shales in the first-

time slope failures. 

3. A range of mobilized shear strengths at the slope failure was obtained from back 

calculations due to the unknown ground water conditions at failure. The most probable 

mobilized shear strength at failure was estimated by considering the partially softened 

and residual shear strengths in the failure zone. 

4. The strength changes, or the "strength path", due to the slope movement, can be fully 

established and used to examine the failure mechanisms of the slopes. 

5. The evaluated slope failures are attributed to progressive failures, and were likely 

triggered by high ground water tables. 

6. The findings in the first paper represents an improvement compared to the empirical 

method of using "good engineering judgment or experience" to estimate the mobilized 

shear strength parameter values for first-time slope failures. 

7. The classification of weathering of the shales for the Sugar Creek embankment slope 

correlates well with the peak shear strength values of the shales, i.e. higher weathering 

degree consistently corresponds to lower shear strength values; but does not correlate 

well with residual shear strength values or other soil index properties. 

8. The shear strength values obtained from different test methods did not exactly match, but 

they were comparable and showed reasonable agreement, considering the large variation 

of the soil. 
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9. The internal friction angles obtained from the BST were generally lower than those 

obtained from direct shear tests (DST), while the cohesion intercepts obtained from BST 

were generally larger than those from DST, for both the alluvium and the highly 

weathered shale. This observation could be mainly attributed to the soil variability, test 

methods and shear strength anisotropy. 

10. The use of the weathering classification and the measured shear strength values for the 

Sugar Creek project are expected to provide an economical and safe design for the slope 

and ground improvement measures. 

11. The second paper represents a detailed case study for using geotechnical information 

including in-situ BST measurements to characterize weathered shale materials with 

emphasis on weathering classifications for slope stability analyses. 

12. The results of the probabilistic slope stability analyses performed on the Sugar Creek 

embankment slope show that the location of the critical slip surface using the BST shear 

strength parameter values is different from that using the DST values. 

13. The calculated factors of safety against slope instability are slightly smaller and the 

probability of failure is higher, when using the BST values compared to the DST values. 

The difference in results is due to the BST measurements providing a lower mean value 

but larger variability than the DST measurements. 

14. With respect to the assumed slip surfaces, the non-circular critical slip surfaces gave 

lower factors of safety, but the circular "critical" slip surfaces gave higher probability of 

failure, indicating inconsistency on the location of the "critical" slip surface resulted from 

the variability in the input parameters. 

15. The Morgenstern-Price method and the Bishop simplified method gave very close results 

on circular slip surface, but gave considerably different results on non-circular slip 

surface, especially with respect to the probability of failure of the slope. This may be due 

to the limitations of the Bishop simplified method on non-circular slip surface. 

16. The use of the two independent sources of shear strength parameter values of BST and 

DST provided a comparison and check for the evaluation of the slope stability and 

probability of failure. 
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17. The third paper represents the first detailed analyses and application of in-situ BST 

results in probabilistic slope stability analysis. 

RECOMMENDATIONS 

Based on the study, the following recommendations are made for future work: 

1. Provide pore water pressure measurement for the Borehole Shear Test (BST) so that the 

measurement of the effective stress can be monitored and verified, especially for clayey 

soils due to their low permeability. This may improve the BST measurements. 

2. Perform the BST as much as possible in the failure zone of a failed slope or the potential 

failure zone of a proposed slope as long as the site investigation program is permitted. 

The failure zone or the potential failure zone can be estimated by trial slope analysis 

using available information such as slope geometry and empirical shear strength 

parameter values. 

3. Establish long term monitoring of ground water condition and slope deformation for 

some critical slopes, especially for those newly constructed slopes susceptible to slope 

instability. This can provide verifications and calibrations for the shear strength 

parameter values measured by the BST, and information for the possible progressive 

failures. 

4. Accumulate information and establish detailed landslide inventory for the state as long as 

the resources is available. This will be helpful to overview the slope instability problems 

from a regional prospect. 

5. Perform quantitative mineralogical analysis for the weathered shales to investigate the 

possible correlation of the mineralogical compositions with the weathering grades. 

6. Perform additional laboratory tests to investigate the anisotropic strength of the 

weathered shales. The tests can be stress-path triaxial compression tests or direct shear 

tests with shearing planes of various directions. 

7. Investigate the possible effect of the strength anisotropy of the weathered shale on the 

slope stability from both deterministic and probabilistic perspective. 
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APPENDIX A - ADDITIONAL DATA FOR ALBIA AND WINTERSET SLOPE 

Table A.l Basic Properties for the Shales at the Albia Slope and the Winterset Slope 
Grain Size Atterberg Limit Classifi Water Total 

Slope BH Depth 
(m) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

LL 
(%) 

PL 
(%) 

PI 
(%) 

cation 
(USCS) 

content 
(%) 

density 
(kN/m3) 

Albia 2 3.2 2 46 52 64 24 40 CH 25.2 19.0 

4 0.6 2 51 47 59 28 31 CH 30.9 

4 1.1 5 47 48 60 25 35 CH 33.6 18.0 

Winterset 2 2.7 1 64 35 50 23 27 CH 16.2 18.9 

3 2.7 3 60 37 59 24 35 CH 29.0 19.2 

7 
0 

-5 

-C -10 
CO 

-15 

-20 

15 0 20 25 30 

Distance (m) 

35 40 45 50 55 

Figure A.l Slope analysis for the Albia slope 

-C -10 
CD 

-15 

-20 

Distance (m) 

Figure A.2 Slope analysis for the Winterset slope 
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APPENDIX B - ADDITIONAL DATA FOR SUGAR CREEK SLOPE 

Table B.l Summary of Basic Property Results 
BH Depth (m) Soil Gran Size Atterberg Limit Classification Water 

content 
(%) 

Total 
density 

(kN/m3) 

Dry 
density 

(kN/m3) 

BH Depth (m) Soil 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

LL PL PI uses AASHTO 

Water 
content 

(%) 

Total 
density 

(kN/m3) 

Dry 
density 

(kN/m3) 
1 6.5-7.1 s.clay 21.7 19.6 16.1 

2 1.2-1.8 s.clay 23.2 19.5 15.8 

3 5.6-5.9 h.w.sh 5 55 41 46 25 21 CL A-7-6 27.4 19.9 15.6 

4 3.6-4.2 s.clay 22.6 17.5 14.3 

4 5.8-6.4 h.w.sh 209 16.8 

4 7.7-8.2 m.w.sh 15.0 18.5 

4 8.2-8.65 m.w.sh 5 91 4 39 22 17 CL A-6 

5 4.8-5.4 s.clay 45 14 31 1M 

5 5.5-6.1 h.w.sh 2 45 54 52 19 33 CH A-7-6 15.8 21.0 18.1 

5 7.15-7.3 h.w.sh 17 39 44 45 18 27 CL A-7-6 

6 8.85-9.45 m.w.sh 2 67 32 38 19 19 CL A-6 

7 2.0-2.6 h.w.sh 9 44 48 45 19 26 CL A-7-6 24.9 20.2 16.3 

7 3.2-3.6 m.w.sh 12.3 19.9 

8 1.2-1.8 h.w.sh 14.5 

8 2.7-3.0 m.w.sh 4 35 61 72 28 44 CH A-7-6 

9 0.9-1.4 s.clay 27.9 16.5 12.9 

9 1,4-1.5 h.w.sh 1 43 57 66 27 39 CH A-7-6 20.1 15.9 

9 2.7-3.0 h.w.sh 0 41 59 67 27 40 CH A-7-6 

9 4.65-4.95 m.w.sh 4 41 56 59 24 35 CH A-7-6 

10 0.6-1.2 h.w.sh 6 63 31 37 20 17 CL A-6 19.8 18.9 15.8 

Note: Results with underline are tested by CH2M Hill. 

Table B.2 Summary of Triaxial and Unconfmed Compression Test Results 

BH Depth (m) Soil CU CD UC 

<t>' (deg.) c (kPa) <t>' (deg.) c' (kPa) su (kPa) 

4 5.8-6.4 h.w.sh 24 7 

5 4.8-5.4 s.clay 20 13 

5 9.2-10.7 s.w.sh 321 

6 9.9-11.4 s.w.sh 239 

7 7.4-8.9 s.w.sh 215 

8 1.2-1.8 h.w.sh 21 1 
9 0.9-1.4 s.clay 30 0 

9 7.5-9.0 s.w.sh 181 

10 0.6-1.2 h.w.sh 34 0 

10 0.6-1.2 h.w.sh 28 21 

10 0.6-1.2 h.w.sh 28 1 
10 0.6-1.2 h.w.sh 34 10 

CU = Consolidated undrained triaxial; CD = Consolidated drained triaxial; 
UC = Unconfmed compression. Results with underline are tested by CH2M Hill. 
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Table B.3 Summary of BST Results 

S.No. Borehole 
Type of 

BST 

Depth 

(m) 
Soil <t>' (deg.) 

C 

(kPa) 
R2 

Data 

Points 

Test 

Date 
Remarks 

1 CH1001 O 6.80 clay 21 23 0.994 4 7.28 

2 cm ooi H 10.35 h.w.sh 15 48 0.961 4 7.28 

3 CH1001 H 10.50 m.w.sh 16 334 0.967 4 7.28 
4 CH1001 H 12.50 s.w.sh 41 55 0.999 4 7.28 

5 cm 002 O 1.52 clay 16 64 0.929 4 7.27 

6 CH1002 H 10.71 s.w.sh 15 104 0.994 4 7.27 

7 cm 003 O 5.89 h.w.sh 19 37 0.994 4 7.26 

8 CH1003 H 12.75 s.w.sh 40 137 0.998 4 7.27 Use 3 of 4 points for regression. 
g CH1004 O 3.86 clay/sand 17 36 0.964 4 7.27 

10 CH1004 O 6.00 h.w.sh 23 21 0.990 4 7.27 

11 CH1004 H 8.65 m.w.sh 13 48 0.993 4 7.28 

12 CH1004 H 11.22 s.w.sh 16 399 0.992 4 7.28 Use 3 of 4 points for regression. 

13 CH1005 O 6.05 h.w.sh 11 66 0.899 4 7.27 

14 CH1005 O 7.13 h.w.sh 11 37 0.964 5 7.27 

15 CH1005 H 9.50 s.w.sh 27 143 0.956 4 7.27 

16 CH1006 O 2.74 clay 17 33 0.940 4 7.26 

17 CH1006 O 9.30 m.w.sh 20 6 1.000 4 7.26 

18 CH1006 H 10.52 s.w.sh 16 629 0.968 4 7.26 

19 CH1007 O 2.44 h.w.sh 11 60 0.964 5 7.26 

20 CH1007 O 2.44 h.w.sh 11 30 0.904 6 7.26 
Residual test. Use 4 of 6 points 
for regression. 

21 CH1007 O 3.33 m.w.sh 21 67 0.964 5 7.26 

22 CH1007 O 3.33 m.w.sh 11 57 0.995 6 7.26 
Residual test. Use 4 of 6 points 
for regression. 

23 CH1007 R 7.80 s.w.sh 9 3970 0.964 4 7.26 Use 3 of 4 points for regression. 

24 CH1008 O 1.12 h.w.sh 7 13 0.945 4 7.24 

25 CH1008 O 2.92 lime stone 
/shale 

21 0 0.986 4 7.24 Assume c' = 0. 

26 CH1008 R 11.43 s.w.sh 19 550 0.982 4 7.24 

27 CH1009 O 1.04 clay 12 9 0.999 4 7.24 

28 CH1009 O 3.00 h.w.sh 10 26 0.983 4 7.24 Use 3 of 4 points for regression. 

29 CH1009 O 5.03 m.w.sh 38 32 0.997 4 7.24 

30 CH1009 O 5.03 m.w.sh 25 28 0.992 4 7.24 Residual test. 

31 CH1009 H 8.90 s.w.sh 27 86 0.991 4 7.24 

32 CH1010 O 0.75 clay/shale - - - 4 7.23 Data scattered. 

33 CH1010 O 1.07 h.w.sh 12 10 0.977 4 7.23 

34 CH1010 O 1.07 h.w.sh 11 12 0.985 4 7.23 Residual test. 

35 CH1010 O 1.27 h.w.sh 9 14 0.981 4 7.23 

BST = Borehole Shear Test; h.w.sh = highly weathered shale; 

0 = BST with ordinary pressure plate; m.w.sh = moderately weathered shale; 

H = BST with high pressure plate; s.w.sh = slightly weathered shale. 

R = Rock BST. 
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Table B.4 Summary of Direct Shear Tests Results 

BH Depth (m) Soil DS DS (residual) BH Depth (m) Soil 

<t> (deg.) c (kPa) R2 
Data 
points 

*' (deg.) c (kPa) R2 
Data 

points 

1 6.5-7.1 s.clay 23 27 0.993 4 

2 1 2 - 1 8  s.clay 24 18 0.999 4 

3 5.6-5.9 h.w.sh 21 18 0.991 4 

4 3.6-4.2 s.clay 28 17 0.994 5 

4 7.7-8.2 m.w.sh 22 12 0.990 3 21 0 1.000 3 

4 8.2-8.65 m.w.sh 18 22 0.969 3 

5 5.5-6.1 h.w.sh 22 0 0.994 4 

5 7.15-7.3 h.w.sh 18 38 0.955 4 

6 8.85-9.45 m.w.sh 14 43 0.959 3 

7 2.0-2.6 h.w.sh 22 23 0.923 4 

7 3.2-3.6 m.w.sh 18 19 1.000 3 15 2 0.988 3 

8 2.7-3.0 m.w.sh 15 41 1.000 3 

9 0.9-1.4 s.clay 31 14 0.983 5 

9 2.4-2.7 h.w.sh 12 21 0.983 4 

9 2.7-3.0 h.w.sh 21 24 0.912 4 

9 4.5-5.2 h.w.sh 19 27 0.993 3 12 2 0.999 3 

9 4.65-4.95 m.w.sh 29 5 0.958 3 

10 0.6-1.2 h.w.sh 26 28 0.954 7 

10 0.6-1.2 h.w.sh 26 15 0.996 4 

10 0.6-1.2 h.w.sh 28 11 0.999 3 21 2 0.994 3 

10 0.6-1.2 h.w.sh 27 98 0.996 7 

Note: Results with underline are tested by CH2M Hill. 

Table B.5 Summary of Ring Shear Test Results 

BH Depth (m) Soil <t>r' (deg.) Cr (kPa) R2 Data 
points 

(c'=0) 

2 10.5-10.8 s.w.sh 6.8 0.9 0.9997 3 6.9 

3 5.6-5.9 h.w.sh 8.2 0 0.9994 3 8.2 

4 8.2-8.65 m.w.sh 8.5 0 1.0000 3 8.5 

5 5.5-6.1 h.w.sh 6.7 2.1 0.9997 3 7.1 

5 7.15-7.3 h.w.sh 8.0 1.7 1.0000 3 8.4 

5 9.3-9.5 s.w.sh 9.1 0 0.9996 3 9.1 

6 8.85-9.45 m.w.sh 9.8 0.9 1.0000 3 10.0 

6 10.52 s.w.sh 9.2 0 0.9999 3 9.2 

7 2.0-2.6 h.w.sh 7.2 1.2 1.0000 3 7.4 

8 2.7-3.0 m.w.sh 7.3 1.9 0.9999 3 8.0 

9 1.4-1.5 h.w.sh 6.4 1.0 0.9995 3 6.6 

9 2.7-3.0 h.w.sh 5.7 2.9 0.9999 3 6.4 

9 4.65-4.95 m.w.sh 7.6 1.0 0.9991 3 8.0 

10 0.6-1.2 h.w.sh 12.8 3.9 0.9997 3 15.4 
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• BH7, 7.80m, S.W.Sh (f = 9°, c'=3.97 MPa) (RBST) 

• BH8, 11.43m, S.W.Sh (f =19°, C =0.55 MPa) (RBST) /f-

OBH9, 8.90m, S.W.Sh (<j>' =27°, c' =0.086 MPa) (BST-H) A 

= 0.15x + 3.9667 

R2 = 0.9643 

= 0.3369% + 0.5478 
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= 0.5185x + 0.0857 
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Figure B.l Rock Borehole Shear Test results 
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Figure B.2 Borehole Shear Test results (1 of 4) 
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Figure B.3 Borehole Shear Test results (2 of 4) 
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Figure B.4 Borehole Shear Test results (3 of 4) 
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Figure B.5 Borehole Shear Test results (4 of 4) 
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Figure B.6 Direct shear test results (1 of 2) 
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Figure B.7 Direct shear test results (2 of 2) 
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Figure B.8 Results of ring shear tests for H.W.Sh (1 of 2) 
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Figure B.9 Results of ring shear tests for H.W.Sh (2 of 2) 
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Figure B.10 CU triaxial compression test results for H.W.Sh at 0.6-1.2m in BH10. 
(a) Deviator stress versus strain; (b) Volume change versus strain; (c) Mohr circles. 
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Figure B.l 1 CD triaxial compression test results for H.W.Sh at 0.6-1.2m in BH10. 
(a) Deviator stress versus strain; (b) Volume change versus strain; (c) Mohr circles. 
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Figure B.12 XRD result (1 of 10) (CH1003, 5.6-5.9m, highly weathered shale) 
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Figure B.13 XRD result (2 of 10) (CH1003, 12.75m, slightly weathered shale) 
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Figure B.14 XRD result (3 of 10) (CHI004, 8.2-8.65m, moderately weathered shale) 
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Figure B.l5 XRD result (4 of 10) (CHI004, 11.22m, slightly weathered shale) 
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Figure B.16 XRD result (5 of 10) (CH1005, 5.5-6.lm, highly weathered shale) 
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Figure B.l7 XRD result (6 of 10) (CHI005, 7.15-7.3m, highly weathered shale) 
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Figure B.18 XRD result (7 of 10) (CHI005, 9.2-10.7m, slightly weathered shale) 
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Figure B.19 XRD result (8 of 10) (CH1007, 2.0-2.6m, highly weathered shale) 
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Figure B.20 XRD result (9 of 10) (CHI009, 2.4-2.7m, highly weathered shale) 
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Figure B.21 XRD result (10 of 10) (CH1010, 0.6-1.2m, highly weathered shale) 
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Figure B.22 Slope stability analysis using BST measurements for circular slip surface 
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Figure B.23 Slope stability analysis using BST measurements for non-circular slip surface 
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Figure B.24 Slope stability analysis using DST measurements for circular slip surface 
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Figure B.25 Slope stability analysis using DST measurements for non-circular slip surface 
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